Answer:
Convert the mass of each element to moles using the molar mass from the periodic table. then Divide each mole value by the smallest number of moles calculated. Round to the nearest whole number
In my opinion I believe it would be motion because depending on how fast the person is going it would determine the outcome of the race
Answer:
Particles are constatantly moving and diffusing
This is possible because of diffusion
Explanation:
Hope this helps
C3H8+3O2--->3CO2+8H
Therefore for every 1:3 there are 3 Carbon dioxides that form. That means find the limiting reactant from the two reactants.
5.5g(1mole C3H8/44.03g of C3H8)=0.1249 moled of C3H8 and if for every one C3H8 we can form three CO2. We can assume 0.3747 miles of CO2 will be produced.
15g of O2(1 mole O2/32g of O2)=0.4685moles O2 and if for every three O2 we can produce three CO2 we may assume a 1:1 ratio.
This means C3H8 will be your limiting reactant. Therefore 0.3747 moles of CO2 will be produced.
0.3747 moles of CO2(48.01 g of CO2/1 mole of CO2)= 17.99 grams of CO2
Answer:
159 mg caffeine is being extracted in 60 mL dichloromethane
Explanation:
Given that:
mass of caffeine in 100 mL of water = 600 mg
Volume of the water = 100 mL
Partition co-efficient (K) = 4.6
mass of caffeine extracted = ??? (unknown)
The portion of the DCM = 60 mL
Partial co-efficient (K) = 
where;
solubility of compound in the organic solvent and
= solubility in aqueous water.
So; we can represent our data as:
÷ 
Since one part of the portion is A and the other part is B
A+B = 60 mL
A+B = 0.60
A= 0.60 - B
4.6=
÷ 
4.6 = 
4.6 ×
=
4.6 B
= 0.6 - B
2.76 B = 0.6 - B
2.76 + B = 0.6
3.76 B = 0.6
B = 
B = 0.159 g
B = 159 mg
∴ 159 mg caffeine is being extracted from the 100 mL of water containing 600 mg of caffeine with one portion of in 60 mL dichloromethane.