Answer:
- final temperature (T2) = 748.66 K
- ΔU = w = 5620.26 J
- ΔH = 9367.047 J
- q = 0
Explanation:
ideal gas:
reversible adiabatic compression:
∴ q = 0
∴ w = - PδV
⇒ δU = δw
⇒ CvδT = - PδV
ideal gas:
⇒ PδV + VδP = RδT
⇒ PδV = RδT - VδP = - CvδT
⇒ RδT - RTn/PδP = - CvδT
⇒ (R + Cv,m)∫δT/T = R∫δP/P
⇒ [(R + Cv,m)/R] Ln (T2/T1) = Ln (P2/P1) = Ln (1 E6/1 E5) = 2.303
∴ (R + Cv,m)/R = (R + (3/2)R)/R = 5/2R/R = 2.5
⇒ Ln(T2/T1) = 2.303 / 2.5 = 0.9212
⇒ T2/T1 = 2.512
∴ T1 = 298 K
⇒ T2 = (298 K)×(2.512)
⇒ T2 = 748.66 K
⇒ ΔU = Cv,mΔT
⇒ ΔU = (3/2)R(748.66 - 298)
∴ R = 8.314 J/K.mol
⇒ ΔU = 5620.26 J
⇒ w = 5620.26 J
⇒ ΔH = ΔU + nRΔT
⇒ ΔH = 5620.26 J + (1 mol)(8.314 J/K.mol)(450.66 K)
⇒ ΔH = 5620.26 J + 3746.787 J
⇒ ΔH = 9367.047 J
Answer:
Power = 7.5 watt
Explanation:
Given data:
Power expend = ?
Force applied = 10 N
Distance cover = 1.5 m
Time = 2 s
Solution:
Power = work/ time
First of all we will calculate work.
Work = Force × distance
Work = 10 N × 1.5 m
Work = 15 N.m
Now we will calculate the power.
Power = 15 N.m / 2s
N.m/s = 1 watt
Power = 7.5 watt
The very common mineral shown in the figure that is referred in this problem that is commonly a pink- to cream-colored mineral with wavy, light-colored lines and does not effervesce would be feldspar. It make up about 41 percent weight of the Earth's crust. It is a group of rocks that contains tectosilicate compounds.
Answer: The first step in balancing a chemical equation is to take inventory or count atoms on the reactant & the product side.
Explanation:
***If you found my answer helpful, please give me the brainliest. :) ***
Answer:
We know that
ħf = ф + Ekmax
where
ħ = planks constant = 6.626x10^-34 J s
f = frequency of incident light = 1.3x10^15 /s (1 Hz =
1/s)
ф = work function of the cesium = 2.14 eV
Ekmax = max kinetic energy of the emmitted electron.
We distinguish that:
1 eV = 1.602x10^-19 J
So:
2.14 eV x (1.602x10^-19 J / 1 eV) = 3.428x10^-19 J
So,
Ekmax = (6.626x10^-34 J s) x (1.3x10^15 / s) - 3.428x10^-19 J
= 8.6138x10^-19 J - 3.428x10^-19 J = 5.1858x10^-19 J
Answer:
5.19x10^-19 J
Kinetic energy:
In physics, the kinetic energy of an object is the energy that it owns due to its motion. It is defined as the work required accelerating a body of a given mass from rest to its specified velocity. Having expanded this energy during its acceleration, the body upholds this kinetic energy lest its speed changes.
Answer details:
Subject: Chemistry
Level: College
Keywords:
• Energy
• Kinetic energy
• Kinetic energy of emitted electrons
Learn more to evaluate:
brainly.com/question/4997492
brainly.com/question/4010464
brainly.com/question/1754173