The picture in the attached figure
step 1we know that
It is given that AD and BD are bisectors of ∠CAB and ∠CBA respectively.
Therefore,
x = ∠CAB/2 -----> equation 1
y = ∠CBA/2 -----> equation 2
step 2In triangle ABC,
∠CAB + ∠CBA + ∠ACB = 180° ----> [The sum of all three angles of a
triangle is 180°]
∠CAB + ∠CBA + 110° = 180°
∠CAB + ∠CBA = 180° - 110°
∠CAB + ∠CBA = 70° ------> divide by 2 both sides
∠CAB/2 + ∠CBA/2 = 70/2 -------> equation 3
substitute equation 1 and equation 2 in equation 3
x+y=35
hence
the answer isx+y =35°
⇒ x + y = 35° ...[From equation (1) and (2)]