<h2>
Answer:</h2>
143μH
<h2>
Explanation:</h2>
The inductance (L) of a coil wire (e.g solenoid) is given by;
L = μ₀N²A / l --------------(i)
Where;
l = the length of the solenoid
A = cross-sectional area of the solenoid
N= number of turns of the solenoid
μ₀ = permeability of free space = 4π x 10⁻⁷ N/A²
<em>From the question;</em>
N = 183 turns
l = 2.09cm = 0.0209m
diameter, d = 9.49mm = 0.00949m
<em>But;</em>
A = π d² / 4 [Take π = 3.142 and substitute d = 0.00949m]
A = 3.142 x 0.00949² / 4
A = 7.1 x 10⁻⁵m²
<em>Substitute these values into equation (i) as follows;</em>
L = 4π x 10⁻⁷ x 183² x 7.1 x 10⁻⁵ / 0.0209 [Take π = 3.142]
L = 4(3.142) x 10⁻⁷ x 183² x 7.1 x 10⁻⁵ / 0.0209
L = 143 x 10⁻⁶ H
L = 143 μH
Therefore the inductance in microhenrys of the Tarik's solenoid is 143
Answer:
360 N
Explanation:
m = 30kg u = 2 m/s a = -2m/s/s
Since the object has an initial velocity of 2 m/s and acceleration of -2 m/s/s
the object will come to rest in 1 second but the force applied in that one second can be calculated by:
F = ma
F = 30 * -2
F = -60 N (the negative sign tells us that the force is acting downwards)
Now, calculating the force applied on the box due to gravity
letting g = -10m/s/s
F = ma
F = 30 * -10
F = -300 N (the negative sign tells us that the force is acting downwards)
Now, calculating the total downward force:
-300 + (-60) = -360 N
<em></em>
<em>Hence, a downward force of 360 N is being applied on the box and since the box did not disconnect from the rope, the rope applied the same amount of force in the opposite direction</em>
Therefore tension on the force = <u>360 N</u>
Answer:
C. Angle of Attack.
Explanation:
The pilot must adjust the angle of attack parameter. The angle of attack of this plane to get to the desired lift coefficient.
And thus, we have
Lift = Weight
Answer:
The earthquake occurred at a distance of 1122 km
Explanation:
Given;
speed of the P wave, v₁ = 8.5 km/s
speed of the S wave, v₂ = 5.5 km/s
The distance traveled by both waves is the same and it is given as;
Δx = v₁t₁ = v₂t₂
let the time taken by the wave with greater speed = t₁
then, the time taken by the wave with smaller speed, t₂ = t₁ + 1.2 min, since it is slower.
v₁t₁ = v₂t₂
v₁t₁ = v₂(t₁ + 1.2 min)
v₁t₁ = v₂(t₁ + 72 s)
v₁t₁ = v₂t₁ + 72v₂
v₁t₁ - v₂t₁ = 72v₂
t₁(v₁ - v₂) = 72v₂

The distance traveled is given by;
Δx = v₁t₁
Δx = (8.5)(132)
Δx = 1122 km
Therefore, the earthquake occurred at a distance of 1122 km
The ampere (symbol: A) is the SI base unit of electric current equal to one coulomb per second.
The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2 times 10–7 newton per meter of length.
Electric current is the time rate of change or displacement of electric charge.
One ampere represents the rate of 1 coulomb of charge per second.
The ampere is defined first (it is a base unit, along with the meter, the second, and the kilogram), without reference to the quantity of charge.
The unit of charge, the coulomb, is defined to be the amount of charge displaced by a one ampere current in the time of one second.
This is your answer friend. Hope it helps you.