B) in Physics, charge conservation is the principle that the total electric charge in an isolated system never changes. The net quantity of electrical charge, the amount of positive charge minus the amount of negative charge in the universe is always conserved.
Answer:
(a) 11.3 T
(b) 6.09 T
Explanation:
Current, I = 14 kA = 14000 A
number of turns, N = 900
inner radius, r = 0.7 m
outer radius, R = 1.3 m
The magnetic field due to a circular coil is given by

(a) The magnetic field due to the inner radius is

(b) The magnetic field due to the outer radius is

Answer:
The value is 
Explanation:
From the question we are told that
The diameter of the pupil is 
The distance of the page from the eye 
The wavelength is 
The refractive index is 
Generally the minimum separation of adjacent dots that can be resolved is mathematically represented as
![y = [ \frac{1.22 * \lambda }{d_p * n_r } ]* d](https://tex.z-dn.net/?f=y%20%20%3D%20%5B%20%5Cfrac%7B1.22%20%2A%20%20%5Clambda%20%7D%7Bd_p%20%2A%20n_r%20%7D%20%5D%2A%20d)
![y = [ \frac{1.22 * 500 *10^{-9} }{4.2 *10^{-3} * 1.36} ]* 0.29](https://tex.z-dn.net/?f=y%20%20%3D%20%5B%20%5Cfrac%7B1.22%20%2A%20%20500%20%2A10%5E%7B-9%7D%20%7D%7B4.2%20%2A10%5E%7B-3%7D%20%2A%201.36%7D%20%5D%2A%200.29)

Answer:
1. increases
2. increases
3. increases
Explanation:
Part 1:
First of all, since the box remains at rest, the horizontal net force acting on the box must equal zero:
F1 - fs = 0.
And this friction force fs is:
fs = Nμs,
where μs is the static coefficient of friction, and N is the normal force.
Originally, the normal force N is equal to mg, where m is the mass of the box, and g is the constant of gravity. Now, there is an additional force F2 acting downward on the box, which means it increases the normal force, since the normal force by Newton's third law, is the force due to the surface acting on the box upward:
N = mg + F2.
So, F2 is increasing, that means fs is increasing too.
Part 2:
As explained in the part 1, N = mg + F2. F2 is increasing, so the normal force is thus increasing.
Part 3:
In part 1 and part 2, we know that fs = Nμs, and since the normal force N is increasing, the maximum possible static friction force fs, max is also increasing.