Answer:
Store chemical energy and transfer it to electrical energy when a circuit is connected.
Explanation:
A battery (single cell) is a container made of one cell that can produce a particular amount of electrical energy when needed.
It works by converting chemical energy to electric energy which is then used as a power source.
It stores up chemical energy and when connected to an external circuit, it provides electrical energy (through the flow of electrical current) to the circuit.
A battery is usually made up of a positive electrode and a negative electrode.
Answer:
amount of energy = 4730.4 kWh/yr
amount of money = 520.34 per year
payback period = 0.188 year
Explanation:
given data
light fixtures = 6
lamp = 4
power = 60 W
average use = 3 h a day
price of electricity = $0.11/kWh
to find out
the amount of energy and money that will be saved and simple payback period if the purchase price of the sensor is $32 and it takes 1 h to install it at a cost of $66
solution
we find energy saving by difference in time the light were
ΔE = no of fixture × number of lamp × power of each lamp × Δt
ΔE is amount of energy save and Δt is time difference
so
ΔE = 6 × 4 × 365 ( 12 - 9 )
ΔE = 4730.4 kWh/yr
and
money saving find out by energy saving and unit cost that i s
ΔM = ΔE × Munit
ΔM = 4730.4 × 0.11
ΔM = 520.34 per year
and
payback period is calculate as
payback period = 
payback period = 
payback period = 0.188 year
Answer:
Length (l) = 6 m
height (h) = 3 m
Load(L) = 500 N
Effort (E) = ?
we know the principal that
E * l = L * h
6 E = 500 * 3
6E = 1500
E = 250
therefore 250 N work is done on the barrel.
Answer:
Option D. 23.5 m
Explanation:
From the question given above, the following data were obtained:
Frequency = 200 Hz
Speed of sound in brass = 4700 m/s
Wavelength of sound in brass =?
We can obtain the wavelength of the sound in the brass by using the following formula as illustrated below:
Wave speed = wavelength × frequency
4700 = wavelength × 200
Divide both side by 200
Wavelength = 4700 / 200
Wavelength = 23.5 m
Thus, the wavelength of the sound in the brass is 23.5 m