1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana [24]
3 years ago
15

Heres a random question just for fun and out. of boredom ok so who started the nasa program? and why? what made him want to do t

his??
if you find it you get 25points has to be exact
Physics
1 answer:
Pachacha [2.7K]3 years ago
5 0
Eisenhower started the NASA project to develop technology for military application.
You might be interested in
W is the work done on the system, and K, U, and Eth are the kinetic, potential, and thermal energies of the system, respectively
MArishka [77]

Answer:

1) a block going down a slope

2) a) W = ΔU + ΔK + ΔE, b) W = ΔE, c)  W = ΔK, d) ΔU = ΔK

Explanation:

In this exercise you are asked to give an example of various types of systems

1) a system where work is transformed into internal energy is a system with friction, for example a block going down a slope in this case work is done during the descent, which is transformed in part kinetic energy, in part power energy and partly internal energy that is represented by an increase in the temperature of the block.

2)

a) rolling a ball uphill

In this case we have an increase in potential energy, if there is a change in speed, the kinetic energy also increases, if the change in speed is zero, there is no change in kinetic energy and there is a change in internal energy due to the stationary rec in the point of contact

 W = ΔU + ΔK + ΔE

b) in this system work is transformed into internal energy

      W = ΔE

c) There is no friction here, therefore the work is transformed into kinetic energy

    W = ΔK

d) if you assume that there is no friction with the air, the potential energy is transformed into kinetic energy

      ΔU = ΔK

7 0
3 years ago
NUMBER 8. NOWWWWWWWW
ss7ja [257]

Torque =  r x F

|F| =  mg =  60 * 10 N = 600 N ( assuming g ~ 10m/s^2)

distance of fulcrum = torque / Force = 90/600 m = .15 m.

7 0
2 years ago
A steady current I flows through a wire of radius a. The current density in the wire varies with r as J = kr, where k is a const
grin007 [14]

Answer:

Explanation:

we can consider an element of radius r < a and thickness dr.  and Area of this element is

dA=2\pi r dr

since current density is given

J=kr

then , current through this element will be,

di_{thru}=JdA=(kr)(2\pi\,r\,dr)=2\pi\,kr^2\,dr

integrating on both sides between the appropriate limits,

\int_0^Idi_{thru}=\int_0^a2\pi\,kr^2\,dr&#10;\\\\&#10;I=\frac{2\pi\,ka^3}{3} -------------------------------(1)

Magnetic field can be found by using Ampere's law

\oint{\vec{B}\cdot\,d\vec{l}}=\mu_0\,i_{enc}

for points inside the wire ( r<a)

now, consider a point at a distance 'r' from the center of wire. The appropriate Amperian loop is a circle of radius r.

by applying the Ampere's law, we can write

\oint{\vec{B}_{in}\cdot\,d\vec{l}}=\mu_0\,i_{enc}&#10;

by symmetry \vec{B} will be of uniform magnitude on this loop and it's direction will be tangential to the loop.

Hence,

B_{in}\times2\pi\,l=\mu_0\int_0^r(kr)(2\pi\,r\,dr)=&#10;\\\\2\pi\,B_{in} l=2\pi\mu_0k \frac{r^3}{3}&#10;\\\\B_{in}=\frac{\mu_0kl^2}{3}&#10;

now using equation 1, putting the value of k,

B_{in} = \frac{\mu_{0} l^2 }{3 } \,\,\, \frac{3I}{2 \pi a^3}&#10;\\\\B_{in} = \frac{ \mu_{0} I l^2}{2 \pi a^3}&#10;

B)

now, for points outside the wire ( r>a)

consider a point at a distance 'r' from the center of wire. The appropriate Amperian loop is a circle of radius l.

applying the Ampere's law

\oint{\vec{B}_{out}\cdot\,d\vec{l}}=\mu_0\,i_{enc}&#10;

by symmetry \vec{B} will be of uniform magnitude on this loop and it's direction will be tangential to the loop. Hence

B_{out}\times2\pi\,r=\mu_0\int_0^a(kr)(2\pi\,r\,dr)&#10;\\\\2\pi\,B_{out}r=2\pi\mu_0k\frac{a^3}{3}&#10;\\\\B_{out}=\frac{\mu_0ka^3}{3r}&#10;

again using,equaiton 1,

B_{out}= \mu_0 \frac{a^3}{3r} \times \frac{3 I}{2 \pi a^3}&#10;\\\\B_{out} = \frac{ \mu_{0} I}{2 \pi r}

8 0
3 years ago
If an atom contains 13 protons, then it has (2.4)a.13 electrons. b. 26 electrons. c. 13 neutrons. d.26 neutrons.
Yuliya22 [10]

If an atom contains 13 protons, then it has <u>13 electrons.</u>

7 0
3 years ago
The anemometer is spinning and the pressure us high
skelet666 [1.2K]

Answer:

what help you need?????????

3 0
2 years ago
Other questions:
  • You're driving down the highway late one night at 20 m/s when a deer steps onto the road 49 m in front of you. You reaction time
    9·1 answer
  • While sitting on the couch, I am pushing down on it and it is pushing up on me. Which of Newton's laws of motion is this demonst
    14·2 answers
  • If a burning log is a black object with a surface area of 0.25 m2 and a temperature of 800 8c, how much power does it emit as th
    11·1 answer
  • Gravity can be described as
    12·1 answer
  • A car is traveling in a uniform circular motion on a section of road whose radius is r. The road is slippery, and the car is jus
    14·1 answer
  • Which one of the following is correct option: hydrogen,
    10·1 answer
  • A steel ball of mass 0.500 kg is fastened to a cord that is 70.0 cm long and fixed at the far end. The ball is then released whe
    15·1 answer
  • The force required to maintain an object at a constant speed while on frictionless ice is
    11·1 answer
  • What is the main reason people and bears slip and fall on ice, be careful when outside in the snow/ice.
    11·1 answer
  • How much work is required to move a 1 nC charge from an electric potential of 0 V to a potential of 18V?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!