Las ciencias naturales usan y obedecen los principios y leyes establecidos por el campo. ... El campo de la física es extremadamente amplio y puede incluir estudios tan diversos como la mecánica cuántica y la física teórica, la física aplicada y la óptica.
Answer:
B
Explanation:
if you sit up straight you will have a proper posture
Answer: Sirius, the brightest star in the sky, is 2.6 parsecs (8.6 light-years) from Earth, giving it a parallax of 0.379 arcseconds. Another bright star, Regulus, has a parallax of 0.042 arcseconds. Then, the distance in parsecs will be,23.46.
Explanation: To find the answer, we have to know more about the relation between the distance in parsecs and the parallax.
<h3>What is the relation between the distance in parsecs and the parallax?</h3>
- Let's consider a star in the sky, is d parsec distance from the earth, and which has some parallax of P amount.
- Then, the equation connecting parallax and the distance in parsec can be written as,


<h3>How to solve the problem?</h3>

- Thus, we can find the distance in parsecs as,

Thus, we can conclude that, the distance in parsecs will be, 23.46.
Learn more about the relation connecting distance in parsecs and the parallax here: brainly.com/question/28044776
#SPJ4
Answer:
I = 97.2 10³⁶ kg m²
Explanation:
The moment of inertia of a body the expression of inertia in the rotational movement and is described by the expression
I = ∫ r² dm
In this problem we are told to use the moment of inertia of a uniform sphere, the expression of this moment of inertia is
I = 2/5 M r²
where m is the mass of the earth and r is the radius of the earth.
Let's calculate
I = 2/5 5.97 10²⁴ (6.38 10⁶)²
I = 97.2 10³⁶ kg m²
Answer : 63 km/h
Explanation :
Outgoing distance = 300 km.
Outgoing speed = 93 km/h.
Break time = 1 h
Return distance = 300 km
Return speed = 56 km/h
Outgoing time = outgoing distance / outgoing speed
Outgoing time = 300 km / 93 km/h = 3.225806451612 h
Return time = return distance / return speed
Return time = 300 km / 56 km/h = 5.357142867142 h
Total distance =. Outgoing distance + return distance travelled
Total distance = 300 km + 300 km = 600 km
Total time = outgoing time + break time + return time
Total time = 3.225806451612 h + 1 h+ 5. 357142867142 h = 9.582949308754 h
Average speed = total distance / total time
Average speed = 600 km / 9.582949308754 h
Average speed = 62.61120462042 km/h = 63 km/h