Answer:
Current can be induced in a lot of ways. I'll try and list as much of these methods as I can here.
1. Moving a bar magnet relative to a wire coil
2. Moving a wire coil relative to a magnet.
3. Move a wire coil that has electricity flowing though it relative to a wire coil without electricity flowing through it.
4. Moving a current carrying circuit relative to a non-current carrying circuit
5. Rapidly opening and closing the switch of a current carrying circuit beside a non current carrying circuit.
6. Moving a bar magnet through the middle of a wire coil.
7. Moving a wire coil through a magnet
8. Moving a circuit relative to a magnetic field.
The main idea is to cause a change in the magnetic field, or to change the available area of the wire loop, or to change the angle between the field and the loop.
Answer:
On the way back up the hill, the car converts kinetic energy to potential energy. In the absence of friction, the car should end up at the same height as it started. ... The total energy of the ball stays the same but is continuously exchanged between kinetic and potential forms.
Explanation:
hope it helps :D
The formula we can use in
this case would be:
v = sqrt (T / (m / l))
Where,
v = is the velocity of the
transverse wave = unknown (?)
T = is the tension on the
rope = 500 N
m = is the mass of the
rope = 60.0 g = 0.06 kg
l = is the
length of the rope = 2.00 m
Substituting the given values into the equation to search
for the speed v:
v = sqrt (500 N/(0.06 kg /2 m))
v = sqrt (500 * 2 / 0.06)
v = sqrt (16,666.67)
<span>v = 129.10 m/s</span>
Answer:
1.8 J
Explanation:
I had this exact question today and found someone who had solved it before, this was their response to the work done by gravity. They used the name "physicsmom"
Vertical distance = 1.8 sin 30 = .9 m
W = 2 N * .9 m = 1.8J
Good luck! I hope this helps!