1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OleMash [197]
3 years ago
14

500 divides 25 is equal ?

Mathematics
1 answer:
Lelu [443]3 years ago
3 0
500 divides 25 is equal 20
You might be interested in
Find a formula for the sum of n terms. Use the formula to find the limit as n → [infinity]. lim n → [infinity] n 2 + i n 8 n i =
Masteriza [31]

Complete Question

Find a formula for the sum of n terms.   \sum\limits_{i=1}^n  ( 8 + \frac{i}{n} )(\frac{2}{n} )

Use the formula to find the limit as n \to \infty

 

Answer:

   K_n  =  \frac{n + 73 }{n}

  \lim_{n \to \infty} K_n  =  1

Step-by-step explanation:

     So let assume that

                  K_n  =  \sum\limits_{i=1}^n  ( 8 + \frac{i}{n} )(\frac{2}{n} )

=>             K_n  =  \sum\limits_{i=1}^n  ( \frac{16}{n} + \frac{2i}{n^2} )

=>              K_n  = \frac{2}{n}  \sum\limits_{i=1}^n (8) + \frac{2}{n^2}   \sum\limits_{i=1}^n(i)

Generally  

         \sum\limits_{i=1}^n (k) = \frac{1}{2}  n  (n + 1)

So  

      \sum\limits_{i=1}^n (8) = \frac{1}{2}  * 8*  (8 + 1)

      \sum\limits_{i=1}^n (8) = 36

K_n  = \frac{2}{n}  \sum\limits_{i=1}^n (8) + \frac{2}{n^2}   \sum\limits_{i=1}^n(i)  

and  

  \sum\limits_{i=1}^n (i) = \frac{1}{2}  n  (n + 1)

  Therefore

         K_n  = \frac{72}{n} + \frac{2}{n^2}   *  \frac{1}{2}  n (n + 1 )

         K_n  = \frac{72}{n} +    \frac{1}{n}   (n + 1 )

         K_n  = \frac{72}{n} +   1 +  \frac{1}{n}

        K_n  =  \frac{72 +  1 +  n }{n}

        K_n  =  \frac{n + 73 }{n}

Now  \lim_{n \to \infty} K_n  =  \lim_{n \to \infty} [\frac{n + 73 }{n} ]

=>     \lim_{n \to \infty} [\frac{n + 73 }{n} ]  =    \lim_{n \to \infty} [\frac{n}{n}  +  \frac{73 }{n}  ]

=>     \lim_{n \to \infty} [\frac{n + 73 }{n} ]  =    \lim_{n \to \infty} [1 +  \frac{73 }{n}  ]

=>     \lim_{n \to \infty} [\frac{n + 73 }{n} ]  =    \lim_{n \to \infty} [1 ] + \lim_{n \to \infty}  [\frac{73 }{n}  ]

=>    \lim_{n \to \infty} [\frac{n + 73 }{n} ]  =  1  +  0

Therefore

      \lim_{n \to \infty} K_n  =  1

5 0
3 years ago
What is the value of 4p4
Paraphin [41]

Answer:

4P4 means the number of ways (permutations) of arranging 4 items from a collection of 4 items.

Step-by-step explanation:

8 0
3 years ago
Pls help choose 2 equations !! :) I will mark brainlist
SCORPION-xisa [38]

Answer:

C and E for sure

Step-by-step explanation:

6 0
3 years ago
Help me with it plizz
Liono4ka [1.6K]
2x + 9 = -65
2x = -65 - 9
2x = -74
x = -74/2
x = -37

So, your final answer is -37

Hope this helps!

3 0
2 years ago
the lenths of the sides of a triangle are in the extended ratio 5:9:10. the perimeter of the triangle is 48 cm. what are the len
dezoksy [38]

Answer:

What's my age im 1300

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • Are the following figures similar?
    12·2 answers
  • Divide the Unit Rate $51 in 6 Hours ?
    13·1 answer
  • *TIME(65 MILES PER HOUR)," "TIME(65)," and "T(65)" all represent which of
    9·1 answer
  • 9 = 4(3k - 4) - 7k solve the equation
    15·2 answers
  • What is the result of -3+5 on a number line
    13·2 answers
  • Solve each equation using square root method 3x2+6=18
    14·1 answer
  • PLEASE HELP ME!
    6·1 answer
  • How many different numbers between $\dfrac{1}{1000}$ and $1000$ can be written either as a power of $2$ or as a power of $3$, wh
    11·2 answers
  • Graph y=2x-7 (please show where to put the points) <br>​
    9·1 answer
  • What is 16+6 <br><br> A. 2(8+1)<br> B. 2(8+3)<br> C. 3(2+3)<br> D. 8(2+3)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!