The question is incomplete. The complete question is:
The half-life for the decay of carbon-14 is 5.73x10^3 years. Suppose the activity due to the radioactive decay of the carbon-14 in a tiny sample of an artifact made of woodfrom an archeological dig is measured to be 2.8x10^3 Bq. The activity in a similiar-sized sample of fresh wood is measured to be 3.0x10^3 Bq. Calculate the age of the artifact. Round your answer to 2 significant digits.
Answer:
570 years
Explanation:
The activity of the fresh sample is taken as the initial activity of the wood sample while the activity measured at a time t is the present activity of the wood artifact. The time taken for the wood to attain its current activity can be calculated from the formula shown in the image attached. The activity at a time t must always be less than the activity of a fresh wood sample. Detailed solution is found in the image attached.
<h3><u>Condensation of gases into liquids by kinetic molecular theory:</u></h3>
The "kinetic molecular theory" explains the states of matter based on the matter composed of very tiny little particles that are constantly in motion. The theory also explains the observable properties and behaviors of solids, liquids, and gases.
Condensation of particles of a real gas to form liquid is due to the attractive forces present in between them. During the condensation process, gas molecules slows down and come together to form a liquid. And also during the transfer of energy to something cooler, the process slows down and they attract the bond to become liquid. Each particle motion is completely independent. The kinetic energy of gas particles is dependent on the temperature of the gas.
The p sublevel holds 6 electrons because it has 3 orbitals.
<span>B) The crystals did not phosphoresce within the drawer but did expose the film</span>
1 mol of CO2 is 44.01g/mol
So multiply that by 2 to get 2 mol of CO2, which is 88.02g