Answer : The equilibrium will shift in the left direction.
Explanation :
Le-Chatelier's principle : This principle states that if any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
The given reaction is:

As per question, when we are adding
then the concentration of
is increased on product side then the equilibrium will shift in the direction where decrease of concentration of
takes place. Therefore, the equilibrium will shift in the left direction.
Thus, the equilibrium will shift in the left direction.
Nitrogen has 5 valence electrons (ve-), so a diatomic nitrogen molecule will have twice as many, 10 valence electrons. Then, just draw electrons in pairs of 2 until you both get ride of all of them (reach 0) and you fill every atom (eight electrons each). It can be drawn either way, the important thing is that there are 3 electron pairs shared between the two atoms.
A mole of any gas occupied 22.4 L at STP. So, the number of moles of nitrogen gas at STP in 846 L would be 846/22.4 = 37.8 moles of nitrogen gas.
Alternatively, you can go the long route and use the ideal gas law to solve for the number of moles of nitrogen given STP conditions (273 K and 1.00 atm). From PV = nRT, we can get n = PV/RT. Plugging in our values, and using 0.08206 L•atm/K•mol as our gas constant, R, we get n = (1.00)(846)/(0.08206)(273) = 37.8 moles, which confirms our answer.
Inertia. Inertia is the natural tendency of bodies to remain in their states of either rectilinear or resting motion.