Answer:
The velocity at the nozzle at inlet
= 3584 
Explanation:
Pressure at inlet
= 1 ×
Pa
Temperature at inlet
= 518 ° c = 791 K
Mass flow rate =
= 88.7
Gas constant for carbon die oxide is R = 189 
Mass flow rate inside the nozzle is given by the formula =
×
×
⇒
= = 1 ×
Pa
⇒ R
= 791 × 189 = 149499 
⇒
= 0.0037 
Put all the above values in above formula we get,
⇒ 88.7 =
× 0.0037 × 
⇒
= 3584 
This is the velocity at the nozzle at inlet.
Falling from an airplane.
Answer:
7.55 km/s
Explanation:
The force of gravity between the Earth and the Hubble Telescope corresponds to the centripetal force that keeps the telescope in uniform circular motion around the Earth:

where
is the gravitational constant
is the mass of the telescope
is the mass of the Earth
is the distance between the telescope and the Earth's centre (given by the sum of the Earth's radius, r, and the telescope altitude, h)
v = ? is the orbital velocity of the Hubble telescope
Re-arranging the equation and substituting numbers, we find the orbital velocity:

Answer:
Yes it is possible to control to some extent.
Explanation:
In general there are two types of magnets : permanent and temporary (electromagnets).
Electromagnets can be controlled since it basically depends on electricity. By switching on and off the electric supply the magnets also can be switched on and off respectively. We can also control the intensity of magnetic power.
On the other hand permanent magnet cannot be switched on and off but the magnetic properties can be altered event to an extent when it loses all its magnetic properties. It can be caused by high temperature, physical impact and also exposure to other magnetic fields. For every element there is a point of temperature called curie temperature above which the permanent magnet loses its magnetic properties. This can be brought back again by induced magnetism. The only issue is that induced magnetism work in most cases but not in all.