1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
morpeh [17]
3 years ago
10

What is imagery?

Physics
2 answers:
Angelina_Jolie [31]3 years ago
8 0
Imagery is almost like a film being played in the readers mind when reading literature. So on that note, I think the last one, 'words that trigger the imagination to remember by appealing to the five senses', is the best choice.

I hope this helps!

Rudik [331]3 years ago
5 0

Correct answer choice is :


D) Words that trigger the imagination to remember by appealing to the five senses


Explanation:


Imagery, in a literary text, is an author's use of clear and expressive voice to add intensity to their work. It advances to human senses to increase the reader's understanding of the work. Powerful forms of imagery involve all of the senses. Basically, there are five types of imagery, each corresponding to one of our senses, visual, auditory, kinesthetic olfactory, and gustatory. The key to good imagery is involving all five senses.

You might be interested in
Flywheels are large, massive wheels used to store energy. They can be spun up slowly, then the wheel's energy can be released qu
Kruka [31]

Answer: a) 1766 sec. b) 55.5 MJ c) 13.9 MW d) -12,944 Nm

Explanation:

a) The torque and  the angular acceleration, are related by the following expression, which resembles very much to the Newton's 2nd Law for point masses:

ζ = I . γ, where ζ=external torque, I = rotational inertia and γ = angular acceleration.

We also know that a flywheel is a solid disk, so the rotational inertia for this type of body is equal to MR² / 2.

By definition, angular acceleration is the rate of change of angular velocity with time, so we can write the following:

γ = ωf -ω₀ / t

Assuming that the flywhel starts from rest, we know that ω₀ = 0, and ωf = 12,000 rpm.

As all the units are given in SI units, it is advisable to convert the rpm to rad/sec, as follows:

12,000 rpm = 12,000 rev. (2π/rev) . (1min/60 sec) = 400 π rad/sec

Returning to the original equation, we have:

ζ = MR² / 2 . (ωf/ t)

Replacing by the values, and solving for t, we have:

t = 250 Kg. (0.75)² m² . 400 π / 2. 50 Nm = 1,766 sec.

b) Due to the flywheel is just rotating, all the stored energy is rotational kinetic energy, which can be written as follows:

K = 1/2 I ωf² = 1/2 (MR²/2) ωf² = 1/4. 250 Kg. (0.75)² m². (400π)²

K= 55.5 MJ

c) Power is defined as energy delivered in a given time.

The energy delivered, is just the half of the originally stored value, i.e. , 55.5 MJ /2, equal to 27.75 MJ.

Dividing this value by 2.0 sec, we have the average power delivered to the machine, that we found to be equal to 27.75 MJ / 2s =  13. 9 MW

d) Using the same relationship than in a), we can write the following:

ζ = I. γ

I remains the same (as the flywheel is the same), so the only unknown is the angular acceleration.

Angular acceleration, by definition, is as follows:

γ = ωf - ω₀ / t

We know the value of ω₀, as it is the top speed value that we have already got,i.e., 400 π rad/sec.

We don't know the value for ωf, but we know the value of the rotational kinetic energy after 2.0 secs, which is equal to the half of the one we obtained in step b).

So, we can write the following:

Kf = 1/2 I ωf² = 1/2 (1/2 I ω₀²) ⇒ 1/ 2 ωf² = 1/4 ω₀² ⇒ωf = ω₀/√2

Replacing in the expression for angular acceleration:

γ = (ω₀/√2 - ω₀) / t = -0.29. 400. π/ 2 rad/sec²= -184.1 rad/sec²

Finally, we can get the torque as follows:

ζ = (250 kg. (0.75)² m² /2) . 184.1 rad/sec² = -12,944 Nm

6 0
4 years ago
When do you produce more pressure on the ground...standing or laying down?
ycow [4]
When you are Standing you produce more pressure on the ground
7 0
3 years ago
If we decrease the time it takes for a car to travel over the same distance, this will
Ilya [14]
C) increase the speed
7 0
3 years ago
Read 2 more answers
A photoelectric effect experiment finds a stopping potential of 1.93 V when light of wavelength 200 nm is used to illuminate the
GenaCL600 [577]

a) Zinc (work function: 4.3 eV)

The equation for the photoelectric effect is:

E=\phi + K (1)

where

E=\frac{hc}{\lambda} is the energy of the incident photon, with

h = Planck constant

c = speed of light

\lambda = wavelength

\phi = work function of the metal

K = maximum kinetic energy of the photoelectrons emitted

The stopping potential (V) is the potential needed to stop the photoelectrons with maximum kinetic energy: so, the corresponding electric potential energy must be equal to the maximum kinetic energy,

eV=K

So we can rewrite (1) as

E=\phi + eV

where we have:

\lambda=200 nm = 2\cdot 10^{-7} m

V = 1.93 V

e is the electron charge

First of all, let's find the energy of the incident photon:

E=\frac{hc}{\lambda}=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{2\cdot 10^{-7}m}=9.95\cdot 10^{-19} J

Converting into electronvolts,

E=\frac{9.95\cdot 10^{-19}J}{1.6\cdot 10^{-19} J/eV}=6.22 eV

And now we can solve eq.(1) to find the work function of the metal:

\phi = E-eV=6.22 eV-1.93 eV=4.29 eV

so, the metal is most likely zinc, which has a work function of 4.3 eV.

b) The stopping potential is still 1.93 V

Explanation:

The intensity of the incident light is proportional to the number of photons hitting the surface of the metal. However, the energy of the photons depends only on their frequency, so it does not depend on the intensity of the light. This means that the term E in eq.(1) does not change.

Moreover, the work function of the metal is also constant, since it depends only on the properties of the material: so \phi is also constant in the equation. As a result, the term (eV) must also be constant, and therefore V, the stopping potential, is constant as well.

6 0
4 years ago
A 0.300 kg ball, moving with a speed of 2.5 m/s, has a head-on collision with at 0.600 kg ball initially at rest. Assuming a per
FrozenT [24]

Answer:

1.25 m/s

Explanation:

Given,

Mass of first ball=0.3 kg

Its speed before collision=2.5 m/s

Its speed after collision=2 m/s

Mass of second ball=0.6 kg

Momentum of 1st ball=mass of the ball*velocity

=0.3kg*2.5m/s

=0.75 kg m/s

Momentum of 2nd ball=mass of the ball*velocity

=0.6 kg*velocity of 2nd ball

Since the first ball undergoes head on collision with the second ball,

momentum of first ball=momentum of second ball

0.75 kg m/s=0.6 kg*velocity of 2nd ball

Velocity of 2nd ball=0.75 kg m/s ÷ 0.6 kg

=1.25 m/s

4 0
3 years ago
Other questions:
  • A boat has a velocity of 5m/s North with respect to a river. It aims to reach point A, directly north across the river, which is
    13·1 answer
  • A can of spray paint is trapped Inside a hot car. The can breaks explain why?
    12·2 answers
  • If the velocity of an object changes from 15 m/s during a time interval of 4s what is the acceleration of the object
    7·1 answer
  • What types of rock make up the oceanic crust and how do they form?
    8·1 answer
  • Two electromagnets are running with equal amounts of electric current. Electromagnet A uses a piece of iron as its metal core, w
    14·1 answer
  • How many coulombs of positive charge are there in 0.1 kg of carbon? Twelve grams of carbon contain Avogadro's number of atoms, w
    8·1 answer
  • The frequency of a microwave is 6Ghz. Calculate the wavelength of the wave in the air.
    9·1 answer
  • Help me with this homework
    10·1 answer
  • 5. A 6.0-kilogram mass is moving with a speed of 2.0 m/s. What is the kinetic energy of the mass?
    14·1 answer
  • What can you conclude about the velocity of the object on the graph below
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!