Answer:
28, 29, 30
Step-by-step explanation:
Answer:
18 years
Step-by-step explanation:
The formula for computing accrued amount A for a principal of P at an interest rate of r(in decimal) compounded n times in a year for t years is given by
![A = P(1 + \frac{r}{n})^{nt}](https://tex.z-dn.net/?f=A%20%3D%20P%281%20%2B%20%5Cfrac%7Br%7D%7Bn%7D%29%5E%7Bnt%7D)
Note that r is percentage converted to decimal. So 3% = 3/100 = 0.03
We can rearrange the above equation to:
![\frac{A}{P} = (1 + \frac{r}{n})^{nt}](https://tex.z-dn.net/?f=%5Cfrac%7BA%7D%7BP%7D%20%3D%20%281%20%2B%20%5Cfrac%7Br%7D%7Bn%7D%29%5E%7Bnt%7D)
Taking logs on both sides
![log(\frac{A}{P}) = log(1 + \frac{r}{n})^{nt}](https://tex.z-dn.net/?f=log%28%5Cfrac%7BA%7D%7BP%7D%29%20%3D%20log%281%20%2B%20%5Cfrac%7Br%7D%7Bn%7D%29%5E%7Bnt%7D)
This gives
![log(\frac{A}{P}) =nt \times log(1 + \frac{r}{n})\\So,\\nt = \frac{log(\frac{A}{P})}{ log(1 + \frac{r}{n})}](https://tex.z-dn.net/?f=log%28%5Cfrac%7BA%7D%7BP%7D%29%20%3Dnt%20%5Ctimes%20log%281%20%2B%20%5Cfrac%7Br%7D%7Bn%7D%29%5C%5CSo%2C%5C%5Cnt%20%3D%20%5Cfrac%7Blog%28%5Cfrac%7BA%7D%7BP%7D%29%7D%7B%20log%281%20%2B%20%5Cfrac%7Br%7D%7Bn%7D%29%7D)
In this particular problem, n = 4, , A= 9600, P = 5600, r =0.03, so r/n = 0.03/4 = 0.0075
1 + r/n = 1+0.0075 = 1.0075
4t = log(9600/5600)/log(1.0075) = log(1.714) / log(1.0075) = 0.234 /0.00325 = 72
t = 72/4 = 18 years
Answer:
It will take very less time actually. we cannot say accurately because if two girls start to chat they will till next day
The scale factor applied to the model is 8000. 8000 times one equals 8000
Answer: B
Step-by-step explanation:
![\frac{2}{7k}(k-7)](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B7k%7D%28k-7%29)
![\frac{2k-14}{7k}](https://tex.z-dn.net/?f=%5Cfrac%7B2k-14%7D%7B7k%7D)
![\frac{2k}{7k}-\frac{14}{7k}](https://tex.z-dn.net/?f=%5Cfrac%7B2k%7D%7B7k%7D-%5Cfrac%7B14%7D%7B7k%7D)
![\frac{2}{7}-\frac{2}{k}](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B7%7D-%5Cfrac%7B2%7D%7Bk%7D)