1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lina20 [59]
3 years ago
13

The slope of the line below is -2. Use the coordinates of the labeled point to find the point-slope equation of the line. (4, -2

)
Mathematics
1 answer:
natka813 [3]3 years ago
7 0
Point slope form : y - y1 = m ( x - x1) 

m = slope = -2  and   Substitute the corresponding values ...

x = 4 and y = - 2 

POINT SLOPE FORM : y + 2 = -2 ( x - 4 ) 
You might be interested in
____ is necessary because researchers in the social sciences almost never have enough resources — time or money — to collect inf
Tanya [424]

Answer:

Sampling is necessary because researchers in the social sciences almost never have enough resources — time or money — to collect information about the entire set of subjects of interest to them.

Step-by-step explanation:

Sampling is done because you usually cannot gather data from the entire population. Even in relatively small populations, the data may be needed urgently, and including everyone in the population in your data collection may take too long.

4 0
3 years ago
Hotdogs are sold in packages The graph below shows the total number of hotdogs sold relative to the number of packages what does
soldier1979 [14.2K]

Answer:

do you still need help

Step-by-step explanation:

to this question

5 0
2 years ago
Coleman uses his graphing calculator to find all of the solutions to the equation shown below.
Phoenix [80]

Answer:

The correct option is;

D. x = -1.38 and 0.82

Please find attached the combined function chart

Step-by-step explanation:

The given equation is x³ + 3 = -x⁴ + 4

Plotting the equation using Excel, we have;

f(x) = x³ + 3, h(x) = -x⁴ + 4

x                                             f(x)                                       h(x)

-1.4                                         0.256                                   0.1584

-1.39                                       0.314381                              0.26699

-1.38                                       0.371928                             0.373261

-1.37                                       0.428647                             0.477246

-1.36                                       0.484544                             0.57898

Which shows an intersection at the point around -1.38

x                                          f(x)                                     h(x)

0.77                                    3.456533                         3.64847

0.78                                    3.474552                         3.629849

0.79                                    3.493039                          3.610499

0.8                                         3.512                                3.5904

0.81                                      3.531441                           3.569533

0.82                                       3.551368                          3.547878

0.83                                       3.571787                            3.525417

Which shows the intersection point around 0.82

Therefore, the correct option is x = -1.38 and 0.82

From the graphing calculator the intersection point is given as

x = -1.3802775691 and 0.81917251339.

8 0
2 years ago
10^(-10log3) How to solve this???
Olenka [21]
a^{log_ab}=b\\and\\log_ab^c=c\cdot log_ab\\\\\\10^{-10log3}=10^{log3^{-10}}=3^{-10}\\\\\\3^{-10}=\frac{1}{3^{10}}=\frac{1}{59\ 049}
4 0
3 years ago
For each of the following vector fields
olga nikolaevna [1]

(A)

\dfrac{\partial f}{\partial x}=-16x+2y

\implies f(x,y)=-8x^2+2xy+g(y)

\implies\dfrac{\partial f}{\partial y}=2x+\dfrac{\mathrm dg}{\mathrm dy}=2x+10y

\implies\dfrac{\mathrm dg}{\mathrm dy}=10y

\implies g(y)=5y^2+C

\implies f(x,y)=\boxed{-8x^2+2xy+5y^2+C}

(B)

\dfrac{\partial f}{\partial x}=-8y

\implies f(x,y)=-8xy+g(y)

\implies\dfrac{\partial f}{\partial y}=-8x+\dfrac{\mathrm dg}{\mathrm dy}=-7x

\implies \dfrac{\mathrm dg}{\mathrm dy}=x

But we assume g(y) is a function of y alone, so there is not potential function here.

(C)

\dfrac{\partial f}{\partial x}=-8\sin y

\implies f(x,y)=-8x\sin y+g(x,y)

\implies\dfrac{\partial f}{\partial y}=-8x\cos y+\dfrac{\mathrm dg}{\mathrm dy}=4y-8x\cos y

\implies\dfrac{\mathrm dg}{\mathrm dy}=4y

\implies g(y)=2y^2+C

\implies f(x,y)=\boxed{-8x\sin y+2y^2+C}

For (A) and (C), we have f(0,0)=0, which makes C=0 for both.

4 0
3 years ago
Other questions:
  • What the algebraic rule for a dilation with a scale factor of 3
    15·1 answer
  • Aubrey and Charlie are driving to a city that is 120 mi from their house. They have already traveled 20 mi, and they are driving
    11·2 answers
  • Name two planes that intersect in UV in the<br> figure to the right
    10·1 answer
  • ( 8 2/4 + 2 1/6) - 5 2/12
    7·1 answer
  • Are the triangles similar
    9·1 answer
  • As Kevin got better he wanted a raise to $14.00 for every 5 problems. How much does Kevin make per problem?
    9·1 answer
  • Round your answer to the nearest hundredth​
    11·2 answers
  • Use the GCF and the distributive property to find the expression that is equivalent to 18+27.
    6·2 answers
  • In the following diagram \overline{DE} \parallel \overline{FG}
    9·1 answer
  • Calculate two iterations of Newton's Method for the function using the given initial guess. (Round your answers to four decimal
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!