Answer:
The volume is 1.2L
Explanation:
Initial volume (V1) = 700mL = 0.7L
Initial temperature (T1) = 7°C = (7 + 273.15)K = 280.15K
Initial pressure = 106.6kPa = 106600Pa
Final temperature (T2) = 27°C = (27 + 273.15)K = 300.15K
Final pressure (P2) = 66.6kPa = 66600Pa
Final volume (V2) = ?
To solve this question, we need to use combined gas equation which is a combination of Boyle's law, Charles Law and pressure law.
(P1 × V1) / T1 = (P2 × V2) / T2
solve for V2 by making it the subject of formula,
P1 × V1 × T2 = P2 × V2 × T1
V2 = (P1 × V1 × T2) / (P2 × T1)
V2 = (106600 × 0.7 × 300.15) / (66600 × 280.15)
V2 = 22397193 / 18657990
V2 = 1.2L
The final volume of the gas is 1.2L
Protons, the number of protons cannot change or the element will change as well.
Answer:
the branch of science that deals with the identification of the substances of which matter is composed; the investigation of their properties and the ways in which they interact, combine, and change; and the use of these processes to form new substances.
Explanation:
Hope this helps. :)
Answer:
Gamma ray
Explanation:
Radio waves have low energy photons, microwave photons have a little more energy than the radio waves, infrared photons have more energy than the microwave, then visible, ultraviolet, X-rays, and, the most energetic of all is the gamma-rays
Answer:
Q = 25360.269 j
Explanation:
Given data:
Mass = 165 g
Initial temperature = 10.55 °C
Final temperature = 47.32°C
Energy absorbed = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 47.32°C - 10.55 °C
ΔT = 36.77 °C
Q = m.c. ΔT
Q = 165 g . 4.18 j/g.°C . 36.77 °C
Q = 25360.269 j