It becomes a acceptor because in an ionic bonding the element who gives out is a donor while the atom which accept is a acceptor
Composting is a technique that allows biodegradable materials of urban, domestic and industrial origin to be degraded to form humus, a type of soil that is very fertile and extremely rich in micronutrients.
These biodegradable materials are materials of organic origin, such as food scraps, fruit peels, pieces of vegetables, among others. As the domestic environment generates a large amount of organic waste, composting in this environment is very favorable, and it can generate a very rich soil to be used in the garden, in vegetables, among other places.
Hope this helps :)
The balanced equation for the reaction is as follows
Na₂CO₃ + 2HCl --> 2NaCl + CO₂ + H₂O
stoichiometry of Na₂CO₃ to HCl is 1:2
number of Na₂CO₃ moles reacted = molarity x volume
number of Na₂CO₃ moles = 0.100 mol/L x 0.750 L = 0.0750 mol
according to molar ratio of 1:2
1 mol of Na₂CO₃ reacts with 2 mol of HCl
then 0.0750 mol of Na₂CO₃ mol reacts with - 2 x 0.0750 = 0.150 mol
molarity of given HCl solution is 1.00 mol/L
molarity is defined as the number of moles of solute in 1 L of solution
there are 1.00 mol in 1 L of solution
therefore there are 0.150 mol in - 0.150 mol / 1.00 mol/L = 0.150 L
volume of HCl required is 0.150 L
Answer:
.11 mol
Explanation:
Convert mmHg to atms by dividing by 760. Then multiply 6.3 by the atms and divide by .08206*(273+28) to get mol
Answer:
grams of sodium phosphate must be added to 1.4 L of this solution to completely eliminate the hard water ions
Explanation:
We will first write the balanced equation for this scenario
3 CaCl2 + 2 Na3PO4 ----> 6 NaCl + Ca3 (PO4)2
3 Mg(NO3)2 + 2 Na3PO4 -----> 6 NaNO3 + Mg3 (PO4)2
The ratio here for both calcium chloride and magnesium nitrate is 
The number of moles of each compound is equal to
Using the mole ratio of 3:2, convert each to moles of sodium phosphate.
mole of CaCl2 is equal to
Na3PO4
mole of CaCl2 is equal to
Na3PO4
Converting moles of sodium phosphate to grams of sodium phosphate we get
g/mol
grams of sodium phosphate must be added to 1.4 L of this solution to completely eliminate the hard water ions