Answer:
- AgNO₃ (aq) + KCl (aq) → AgCl (s) + KNO₃ (aq)
Explanation:
In a <em>solubility table</em> you find:
- AgNO₃ (silver nitrate) is highly soluble
- KCl (potassium chloride) is soluble
- AgCl (silver chloride) is insoluble
- KNO₃ (potassium nitrate) is soluble
In a chemical equation the states of soluble compounds is identified as aqeous, using the letter "aq" in parenthesis, and the state of insoluble compounds is identified as solid, using "s" in parenthesis.
Then, the reaction showing the states of the reactants and products is:
- AgNO₃ (aq) + KCl (aq) → AgCl (s) + KNO₃ (aq)
Substances have different tendencies to donate or accept electrons. When a really good donor meets a great acceptor, the chemical reaction releases a lot of energy. Oxygen (O2) is the best electron acceptor and is used in many aerobic reactions (reactions with oxygen). Hydrogen gas (H2) is a good electron donor.
When O2 and H2 are combined, along with a catalyst, water (H2O) is formed. This example of a redox reaction can be written like this:

Answer:
There is 17.1 kJ energy required
Explanation:
Step 1: Data given
Mass of ethanol = 322.0 grams
Initial temperature = -2.2 °C = 273.15 -2.2 = 270.95K
Final temperature = 19.6 °C = 273.15 + 19.6 = 292.75 K
Specific heat capacity = 2.44 J/g*K
Step 2: Calculate energy
Q = m*c*ΔT
⇒ m = the mass of ethanol= 322 grams
⇒ c = the specific heat capacity of ethanol = 2.44 J/g*K
⇒ ΔT = T2 - T1 = 292.75 - 270.95 = 21.8 K
Q = 322 * 2.44 * 21.8 = 17127.8 J = 17.1 kJ
There is 17.1 kJ energy required
Answer
Avogadro's number: One mole of any substance contains 6.022×10²³ molecules
Explanation
While finding the number of moles of oxygen molecules present in 3.65 moles of Na2SO4 the conversion factor used would be Avodagro's number, which is
One mole of any substance contains 6.022×10²³ molecules.
Answer:
5 g/cm^3
Explanation:√3V=1.91293cm