<span> An electroscope that might have a static charge is tested on a metal surface. From there, the charges move to the metal and straight to the foil leaves. If they repel, or move away from each other, that means they have identical charges. This applies for both positive and negative static electricity.
work cited: School of champions, Google
</span>
At 100 km/hr, the car's kinetic energy is
KE = (1/2) (mass) (speed)²
KE = (1/2) (1575 kg) ( [100 km/hr] x [1000 m/km] x [1 hr/3600 sec] )²
KE = (787.5 kg) (27.78 m/s)²
KE = 607,639 Joules
In order to deliver this energy in 2.9 seconds, the engine must supply
(607,639 J / 2.9 sec) = 209,531 watts
<em>Power = 281 HP</em>
Central maximum = d* wavelength/ D
thus
12*10-^3 = 3.4*6.32*10-^7/D
D = 3.4*6.32*10-^7/12*10-^3
D = 1.79*10-^4 m
Potential energy behind dams
The answer is: (2) : <span>↘
___________________________________</span>