√80 because the absolute value for complex numbers of the form a+bi are evaluated as √a²+b²
Answer:
D: r^2 = 4
Step-by-step explanation:
Square the radius: r^2 = 2^2 = 4 (answer)
Answer:
Step-by-step explanation:
roots of a complex number is given by DeMoivre's formula.
![\sf \boxed{\bf r^{\frac{1}{n}}\left[Cos \dfrac{\theta + 2\pi k}{n}+i \ Sin \ \dfrac{\theta+2\pi k}{n}\right]}](https://tex.z-dn.net/?f=%5Csf%20%5Cboxed%7B%5Cbf%20r%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%5Cleft%5BCos%20%5Cdfrac%7B%5Ctheta%20%2B%202%5Cpi%20k%7D%7Bn%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B%5Ctheta%2B2%5Cpi%20k%7D%7Bn%7D%5Cright%5D%7D)
Here, k lies between 0 and (n -1) ; n is the exponent.

a = -1 and b = √3




n = 4
For k = 0,
![\sf z = \sqrt[4]{10}\left[Cos \ \dfrac{\dfrac{-\pi}{3} +0}{4}+iSin \ \dfrac{\dfrac{-\pi}{3}+0}{4}\right] \\\\\\z= \sqrt[4]{10} \left[Cos \ \dfrac{ -\pi }{12}+iSin \ \dfrac{-\pi}{12}\right]\\\\\\z = \sqrt[4]{10}\left[-Cos \ \dfrac{\pi}{12}-i \ Sin \ \dfrac{\pi}{12}\right]](https://tex.z-dn.net/?f=%5Csf%20z%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B%5Cdfrac%7B-%5Cpi%7D%7B3%7D%20%2B0%7D%7B4%7D%2BiSin%20%20%5C%20%5Cdfrac%7B%5Cdfrac%7B-%5Cpi%7D%7B3%7D%2B0%7D%7B4%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5Cz%3D%20%5Csqrt%5B4%5D%7B10%7D%20%5Cleft%5BCos%20%5C%20%5Cdfrac%7B%20-%5Cpi%20%20%7D%7B12%7D%2BiSin%20%20%5C%20%5Cdfrac%7B-%5Cpi%7D%7B12%7D%5Cright%5D%5C%5C%5C%5C%5C%5Cz%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5B-Cos%20%5C%20%5Cdfrac%7B%5Cpi%7D%7B12%7D-i%20%5C%20Sin%20%5C%20%5Cdfrac%7B%5Cpi%7D%7B12%7D%5Cright%5D)
For k =1,
![\sf z = \sqrt[4]{10}\left[Cos \ \dfrac{5\pi}{12}+i \ Sin \ \dfrac{5\pi}{12}\right]](https://tex.z-dn.net/?f=%5Csf%20z%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B5%5Cpi%7D%7B12%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B5%5Cpi%7D%7B12%7D%5Cright%5D)
For k =2,
![z = \sqrt[4]{10}\left[Cos \ \dfrac{11\pi}{12}+i \ Sin \ \dfrac{11\pi}{12}\right]](https://tex.z-dn.net/?f=z%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B11%5Cpi%7D%7B12%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B11%5Cpi%7D%7B12%7D%5Cright%5D)
For k = 3,
![\sf z = \sqrt[4]{10}\left[Cos \ \dfrac{17\pi}{12}+i \ Sin \ \dfrac{17\pi}{12}\right]](https://tex.z-dn.net/?f=%5Csf%20z%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B17%5Cpi%7D%7B12%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B17%5Cpi%7D%7B12%7D%5Cright%5D)
For k = 4,
![\sf z =\sqrt[4]{10}\left[Cos \ \dfrac{23\pi}{12}+i \ Sin \ \dfrac{23\pi}{12}\right]](https://tex.z-dn.net/?f=%5Csf%20z%20%3D%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B23%5Cpi%7D%7B12%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B23%5Cpi%7D%7B12%7D%5Cright%5D)
The correct answer is A.) { - 0.79 ; 1.08 }, because
<span><span> <span>For </span><span>ax^2 + bx + c = 0</span><span>, the value of </span>x<span> is given by:</span></span> <span> ;
a = - 7 ; b = 2 ; c = 6 ;
b^2 - 4ac = 4 + 168 = 172 ; </span></span>

≈ 13.11 ;<span><span>
x 1 = ( - 2 + 13.11 ) / (- 14) = 11.11 / ( - 14 ) </span></span>≈<span><span> -0.79 ;
x = 2 = ( - 2 - 13.11 ) / ( - 14 ) = (-15.11) / (- 14 ) </span></span>≈ 1.08 ;<span><span>
</span></span>
Answer:
0
Step-by-step explanation:
Cancel out x-y to x^2-Y^2 and you get x+y-x-y which is 0