This uses something called the combined gas law. The combined gas law is as follows: (P1*V1/T1) = (P2*V2/T2)
According to question 2, you are given the following values initially:
P1 = 680 mm Hg * (1 atm/760 mm Hg) = 0.895 atm
V1 = 20.0 L
T1 = 293 K
STP or standard temperature and pressure implies that the other values we know are:
P2 = 1 atm
T2 = 273 K
Our unknown is V2
If we plug in our known values into the combined gas law:
(P1*V1/T1) = (P2*V2/T2)
(0.895 atm * 20.0 L)/293K = (1 atm * X liters)/273 K
0.0611 L*atm/K = (1 atm * X liters)/273 K
16.7 L = X liters
Therefore, the volume occupied at STP is 16.7 liters
This makes sense because the gas would occupy a smaller volume at a lower temperature, since the gas would have a lower average kinetic energy.
Answer:
2Na + 2H2O → 2NaOH + H2
Explanation:
A balanced equation is an equation for a chemical reaction in which the number of atoms for each element in the reaction and the total charge are the same for both the reactants and the products.
To answer the questions,
(1) Activation energy is the amount of energy that is needed for the reaction to proceed, converting the reactant to products. The answer is letter B.
(2) The rate of chemical reaction normally increases as the reactant concentration is increased. The answer is letter C.
Answer: The theoretical yield is 6 rings.
Explanation:
Theoretical yield is predicted or estimated value.
Jeweler used 2 sapphires for 1 ring
Then for each sapphire there will be =
rings are used
For 12 sapphire =
will be used
Out of 10 rings 6 rings with 2 sapphires will be made.
The theoretical yield is 6 rings.
Simply its the smallest particle da