Hello!
The atomic number is determined only by the number of protons in the nucleus of an atom. But, in a neutral atom it also represents the number of electrons in the electron cloud.
Neutrons are only important in the nucleus for helping us find atomic weight, which varies as we move along the perodic table and does not always equal the same amount of it's atomic number. Which is why it would not be a suitable answer for the first blank space. Electrons do not work either as they do not exist inside the nucleus but rather outside the atom.
The second space, since it states is in the electron cloud, we can deduct that electrons would be an appropriate answer there.
If you need anymore help feel free to ask, but I hope this answers your question.
Can you do plsssssssss
help me plssssssssssss meee
To calculate the number of atoms of Cr, we first find the number of moles per unit of cubic centimeter of Cr. Then, use avogadros number for the number of atoms. Calculations are as follows:
1 cm^3 (7.15 g/cm^3) (1 mol / 51.996 g Cr) = 0.14 mol Cr
0.14 mol Cr ( 6.022 x 10^23 atoms Cr / 1 mol Cr ) = 8.28 x 10^22 atoms Cr
Answer:

Explanation:
Hello there!
In this case, given the T-V variation, we understand it is possible to apply the Charles' law as shown below:

Thus, since we are interested in the initial temperature, we can solve for T1, plug in the volumes and use T2 in kelvins:

Best regards!
Answer: Option (c) is the correct answer.
Explanation:
When a weak acid reacts with a strong base then it results into the formation of a basic solution. Hence, the resulting solution will always have a pH greater than 7.
Since, at the equivalence point number of hydrogen ions become equal to the hydroxide ions. Therefore, pH of solution will be about 7.
So at the equivalence point, the weak acid will get neutralized due to the addition of strong base. Therefore, it will lead to the formation of conjugate base.
As a result, the solution will become slightly basic in nature.
Thus, we can conclude that at the equivalence point, the acid has all been converted into its conjugate base, resulting in a weakly acidic solution because at the equivalence point, the acid has all been converted into its conjugate base, resulting in a weakly basic solution.