Answer:
The different objects that make up a circuit are called components. A circuit must have a power source, such as a battery, and the current flows through a conductor, such as a wire.
Explanation:
I hope that was useful.
1. Two parallel normal faults form.
4. The hanging wall on the left slides down relative to the footwall.
5. The hanging wall on the right slides down relative to the footwall.
Answer:
1.84 L
Explanation:
Using the equation for reversible work:
Where:
W is the work done (J) = -287 J.
Since the gas did work, therefore W is negative.
P is the pressure in atm = 1.90 atm.
However, work done is in joules and pressure is in atm. We can use the values of universal gas constant as a convenient conversion unit. R = 8.314 J/(mol*K); R = 0.0821 (L*atm)/(mol*K)
Therefore, the conversion unit is 0.0821/8.314 = 0.00987 (L*atm)/J
is the initial volume = 0.350 L
is the final volume = ?
Thus:
(-287 J)*0.00987 (L*atm)/J = -1.9 atm*( - 0.350) L
= [(287*0.00987)+(1.9*0.350)]/1.9 = (2.833+0.665)/1.9 =1.84 L
They can change properties completely
They can be separated
They form a new set of elements and compounds
<span>The elements become part of the original compounds</span>
Answer:
15.69 dozen
Explanation:
Mass of penny = 5 g
Dozens of penny =..?
Next, we shall convert 5 g to gross. This can be obtained as follow:
3824 g = 1000 gross
Therefore,
5 g = 5 g × 1000 gross / 3824 g
5 g = 1.3075 gross
Thus, 5 g is equivalent to 1.3075 gross.
Finally, we convert 1.3075 gross to dozen. This can be obtained as follow:
1 gross = 12 dozen
Therefore,
1.3075 gross = 1.3075 gross × 12 dozen / 1 gross
1.3075 gross = 15.69 dozen
Thus, 5 g of penny is equivalent to 15.69 dozen