Answer:
138.96kJ is the maximum electrical work
Explanation:
The maximum electrical work that can be obtained from a cell is obtained from the equation:
W = -nFE
<em>Where W is work in Joules,</em>
<em>n are moles of electrons = 2mol e- because half-reaction of Zn is:</em>
Zn(s) → Zn²⁺(aq) + 2e⁻
F is faraday constant = 96500Coulombs/mol
E is cell potential = 0.72V
Replacing:
W = -2mol*96500Coulombs/mol*0.72V
W = - 138960J =
<h3>138.96kJ is the maximum electrical work</h3>
<em />
Answer:
A. for K>>1 you can say that the reaction is nearly irreversible so the forward direction is favored. (Products formation)
B. When the temperature rises the equilibrium is going to change but to know how is going to change you have to take into account the kind of reaction. For endothermic reactions (the reverse reaction is favored) and for exothermic reactions (the forward reaction is favored)
Explanation:
A. The equilibrium constant K is defined as

In any case
aA +Bb equilibrium Cd +dD
where K is:
![K= \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}](https://tex.z-dn.net/?f=K%3D%20%5Cfrac%7B%5BC%5D%5E%7Bc%7D%5BD%5D%5E%7Bd%7D%7D%7B%5BA%5D%5E%7Ba%7D%5BB%5D%5E%7Bb%7D%7D)
[] is molar concentration.
If K>>> 1 it means that the molar concentration of products is a lot bigger that the molar concentration of reagents, so the forward reaction is favored.
B. The relation between K and temperature is given by the Van't Hoff equation

Where: H is reaction enthalpy, R is the gas constant and T temperature.
Clearing the equation for
we get:

Here we can study two cases: when delta
is positive (exothermic reactions) and when is negative (endothermic reactions)
For exothermic reactions when we increase the temperature the denominator in the equation would have a negative exponent so
is greater that
and the forward reaction is favored.
When we have an endothermic reaction we will have a positive exponent so
will be less than
the forward reactions is not favored.

Molarity can be defined as the number of moles of solute in 1 L of solution.
M = n/V
Where M is the molarity of the solution (M or mol/L), n is the moles of the solute (mol) and V is the volume of the solution (L).
Here, solute is KF.
n = <span>0.250 mol
</span>V = 0.500 L
M = ?
By applying the formula,
M = 0.250 mol / 0.500 L
M = 0.500 mol/L
Hence, the molarity of KF solution is 0.500 mol/L.
Answer: Hydrogen gas will be given off
Explanation:
Whenever a metal reacts with an acid, a salt of the metal is formed and hydrogen gas is given off.
For instance: The reaction of Zinc metal on Hydrochloric acid.
Zn(s) + 2HCl(aq) ---> ZnCl2(aq) + H2(g)
From the equation provided, hydrogen gas is given off as a by-product
Answer:
Role is defined below
Explanation:
A small GTP-binding protein, is an important module of the signal transduction pathway used by growth factors to initiate cell growth and differentiation. Cellular activation with growth factors such as epidermal growth factor (EGF) induces Ras to move from an inactive state linked to GDP to an active state linked to GTP. In recent times, a mixture of genetic and biochemical studies has resulted in the elucidation of a signaling pathway that leads from growth factor receptors to Ras. After joining EGF, the EGF receptor tyrosine kinase is activated, which leads to receptor auto phosphorylation in multiple tyrosine residues. Signaling proteins with homology domains Src 2 (SH2) then bind to these phosphorylated residues in tyrosine, initiating multiple signaling cascades. Distinct of these SH2 area proteins, Grb2, exists in the cytoplasm in a preformed complex with a second protein, Son of Sevenless (Sos), which can catalyze the Ras GTP / GDP exchange. After stimulation of the growth factor, the phosphorylated EGF receptor with tyrosine binds to the Grb2 / Sos complex and translocates it to the plasma membrane. It is believed that this translocation brings Sos closer to Ras, which leads to the activation of Ras. In dissimilarity, the insulin receptor does not bind Grb2 directly, but rather induces the tyrosine phosphorylation of two proteins, the substrate-1 insulin receptor and Shc, which bind to the Grb2 / Sos complex. Once Ras is activated, a cascade of protein kinases that are important in a myriad of growth factor responses is stimulated.