Answer:
0.26g of NaCl is the maximum mass that could be produced
Explanation:
Based on the reaction:
HCl + NaOH → NaCl + H₂O
<em>Where 1 mol of HCl reacts per mol of NaOH to produce 1 mol of NaCl</em>
<em />
To solve this question we need to find <em>limiting reactant. </em>The moles of limiting reactant = Moles of NaCl produced:
<em>Moles HCl -Molar mass: 36.46g/mol-:</em>
0.365g HCl * (1mol / 36.46g) = 0.010 moles HCl
<em>Moles NaOH -Molar mass: 40g/mol-:</em>
0.18g NaOH * (1mol / 40g) = 0.0045 moles NaOH
As the reaction is 1:1 and moles NaOH < moles HCl, limiting reactant is NaOH and maximum moles produced of NaCl are 0.0045 moles.
The mass of NaCl is:
<em>Mass NaCl -Molar mass: 58.44g/mol-:</em>
0.0045 moles * (58.44g/mol) =
<h3>0.26g of NaCl is the maximum mass that could be produced</h3>
The choices can be found elsewhere and as follows:
<span>A.The enzyme pectinase speeds up the breakdown of pectin in fruits, producing more juice.. .
B.The enzyme pectinase enhances the taste of fruit juices, making them more popular.. .
C.The enzyme pectinase speeds up the breakdown of toxins in fruits, producing more juice.
The correct answer would be A. </span>The enzyme pectinase speeds up the breakdown of pectin in fruits, producing more juice. With this, the manufacturer company will get more volume of product from same amount of resource.
Answer:
Part A is just T2 = 58.3 K
Part B ∆U = 10967.6 x C
You can work out C
Part C
Part D
Part E
Part F
Explanation:
P = n (RT/V)
V = (nR/P) T
P1V1 = P2V2
P1/T1 = P2/T2
V1/T1 = V2/T2
P = Pressure(atm)
n = Moles
T = Temperature(K)
V = Volume(L)
R = 8.314 Joule or 0.08206 L·atm·mol−1·K−1.
bar = 0.986923 atm
N = 14g/mol
N2 Molar Mass 28g
n = 3.5 mol N2
T1 = 350K
P1 = 1.5 bar = 1.4803845 atm
P2 = 0.25 bar = 0.24673075 atm
Heat Capacity at Constant Volume
Q = nCVΔT
Polyatomic gas: CV = 3R
P = n (RT/V)
0.986923 atm x 1.5 = 3.5 mol x ((0.08206 L atm mol -1 K-1 x 350 K) / V))
V = (nR/P) T
V = ((3.5 mol x 0.08206 L atm mol -1 K-1)/(1.5 x 0.986923 atm) )x 350K
V = (0.28721/1.4803845) x 350
V = 0.194 x 350
V = 67.9036 L
So V1 = 67.9036 L
P1V1 = P2V2
1.4803845 atm x 67.9036 L = 0.24673075 x V2
100.52343693 = 0.24673075 x V2
V2 = P1V1/P2
V2 = 100.52343693/0.24673075
V2 = 407.4216 L
P1/T1 = P2/T2
1.4803845 atm / 350 K = 0.24673075 atm / T2
0.00422967 = 0.24673075 /T2
T2 = 0.24673075/0.00422967
T2 = 58.3 K
∆U= nC
∆T
Polyatomic gas: C
= 3R
∆U= nC
∆T
∆U= 28g x C
x (350K - 58.3K)
∆U = 28C
x 291.7
∆U = 10967.6 x C
Answer:
Transition metals and lanthanide metals
Explanation:
Alkali metals, alkaline earth metals, halogens, and noble gases are all part of the main group elements.
Periods and families simply refer to the rows and columns of the periodic table. They don't specify the type of element.