Roygbv evjnefvvnefv ekfv k kn ke nv
Answer:
D.
R increases
V is constant
I decreases
Explanation:
The resistance of a wire is given by the following formula:

It is clear from this formula that resistance is directly proportional to the length of wire. So, when length of wire is increased, <u>the resistance of circuit increases</u>.
The <u>voltage in the circuit will be constant</u> as the voltage source remains same and it is not changed.
Now, we can use Ohm Law:
V = IR
at constant V:
I ∝ 1/R
it means that current is inversely proportional to resistance. Hence, the increase of resistance causes <u>the current in circuit to decrease.</u>
Therefore, the correct option will be:
<u>D.</u>
<u>R increases
</u>
<u>V is constant
</u>
<u>I decreases</u>
Answer:
Elements in the same period have the same number of electron shells; moving across a period (so progressing from group to group), elements gain electrons and protons and become less metallic. This arrangement reflects the periodic recurrence of similar properties as the atomic number increases.
Explanation:
The Periodic Table can predict the properties of new elements, because it organizes the elements according to their atomic numbers. ... They hope that the two nuclei at the centre of these atoms will fuse and form a heavier nucleus. When these heavy elements form, they are usually highly unstable.
In both cases less energy is required
But comparetively Mg require more energy than K
Let's see the electron configuration of Both
- [Mg]=1s²2s²2p⁶3s²=[Ne]3s²
- [K]=1s²2s²2p⁶3s²3p⁶4s¹=[Ar]4s¹
K has only one valence electron so very less ionization enthalpy so less energy required
Mg has 2 so more IE hence more energy required