<u>Answer:</u>
The matter does not move in solid state but vibrates.
<u>Explanation:</u>
The atoms inside the matter cannot move or shift their positions without any external force but makes some small vibration movements. Generally in solids, the particles are bound by the attractive forces acting in between the atoms inside the matter.
The small vibrations that are happening inside the matter are because of the external factors like temperature. The increase in temperature raises the kinetic energy of the atoms inside and makes them move faster and this results in the vibration of the matter.
Answer:
i know the questin but i got to try and find it
Explanation:
Answer:
The value is 
Explanation:
From the question we are told that
The velocity which the rover is suppose to land with is
The mass of the rover and the parachute is
The drag coefficient is
The atmospheric density of Earth is 
The acceleration due to gravity in Mars is 
Generally the Mars atmosphere density is mathematically represented as

=> 
=> 
Generally the drag force on the rover and the parachute is mathematically represented as

=>
=>
Gnerally this drag force is mathematically represented as

Here A is the frontal area
So

=> 
=> 
Answer:

Explanation:
Let's use the equation that relate the temperatures and volumes of an adiabatic process in a ideal gas.
.
Now, let's use the ideal gas equation to the initial and the final state:

Let's recall that the term nR is a constant. That is why we can match these equations.
We can find a relation between the volumes of the initial and the final state.

Combining this equation with the first equation we have:


Now, we just need to solve this equation for T₂.

Let's assume the initial temperature and pressure as 25 °C = 298 K and 1 atm = 1.01 * 10⁵ Pa, in a normal conditions.
Here,
Finally, T2 will be:
