Answer:
v = 7934.2 m/s
Explanation:
Here the total energy of the Asteroid and the Earth system will remains conserved
So we will have

now we know that





now from above formula

now we have

now plug in all data


Answer:
Making a quick cut left to intercept a pass
Explanation:
It takes more energe to do than running
Answer:
A collision in which both total momentum and total kinetic energy are conserved
Explanation:
In classical physics, we have two types of collisions:
- Elastic collision: elastic collision is a collision in which both the total momentum of the objects involved and the total kinetic energy of the objects involved are conserved
- Inelastic collision: in an inelastic collision, the total momentum of the objects involved is conserved, while the total kinetic energy is not. In this type of collisions, part of the total kinetic energy is converted into heat or other forms of energy due to the presence of frictional forces. When the objects stick together after the collision, the collisions is called 'perfectly inelastic collision'
Answer:
Av = 25 [m/s]
Explanation:
To solve this problem we must use the definition of speed, which is defined as the relationship between distance over time. for this case we have.

where:
Av = speed [km/h] or [m/s]
distance = 180 [km]
time = 2 [hr]
Therefore the speed is equal to:
![Av = \frac{180}{2} \\Av = 90 [km/h]](https://tex.z-dn.net/?f=Av%20%3D%20%5Cfrac%7B180%7D%7B2%7D%20%5C%5CAv%20%3D%2090%20%5Bkm%2Fh%5D)
Now we must convert from kilometers per hour to meters per second
![90[\frac{km}{h}]*1000[\frac{m}{1km}]*1[\frac{h}{3600s} ]= 25 [m/s]](https://tex.z-dn.net/?f=90%5B%5Cfrac%7Bkm%7D%7Bh%7D%5D%2A1000%5B%5Cfrac%7Bm%7D%7B1km%7D%5D%2A1%5B%5Cfrac%7Bh%7D%7B3600s%7D%20%5D%3D%2025%20%5Bm%2Fs%5D)