hydrogen and carbon, hope that helped
Wavelength is 6.976 x 10^ -35 m
Explanation:
In this, we can use De Broglie’s equation. This equation is the relationship between De Broglie’s wavelength, velocity and the mass of a moving object. In this equation, we are using plank's constant which is 6.626 x 10^-34 m^2 kg/s.
We know that one mile per hour is equivalent to 0.447 M/S.
And One gram is equivalent to 10^-3 kg.
De Broglie’s wavelength = λ ( wave length) = Plank’s constant/ Mass x velocity
λ ( wave length) = 6.626 x 10^ -34/ (425 x10^-3) x ( 50 x 0.447)
= 6.626 x 10^ -34/ 0. 425 x 22.35
= 6.626 x 10^ -34/ 9.498
= 6.976 x10^ -35 m
So, the wavelength of the football will be 6.976 x 10^ -35 m
Your answer is D. 8
16 = 2^4
72 = 2^3*3^2
So you'll choose 2^3 = 8
Answer:<em> Hydrogen can lose as much as possible there is no limits to it.</em>
<em>Hope this helps!</em>
<em>I am joyous to assist you anytime!</em>
<em>-Jarvis</em>
<em>Extras: Hydrogen is the chemical element with the symbol H and atomic number 1. hydrogen is the lightest element in the periodic table. Hydrogen is the most abundant chemical substance in the Universe (;</em>
Density is defined as mass/volume, and the volume is 36.2-25 mL
so just substitute into the equation to get the answer.
Hope this helps.