Based on the liquids viscosity (which is a measure of how quickly/slowly a fluid can flow).
Higher viscosity represents a "thicker" liquid & slower flow (honey)
Lower viscosity represents a "thinner" liquid & quicker flow (vinegar)
Answer:
0.42%
Explanation:
<em>∵ pH = - log[H⁺].</em>
2.72 = - log[H⁺]
∴ [H⁺] = 1.905 x 10⁻³.
<em>∵ [H⁺] = √Ka.C</em>
∴ [H⁺]² = Ka.C
∴ ka = [H⁺]²/C = (1.905 x 10⁻³)²/(0.45) = 8.068 x 10⁻⁶.
<em>∵ Ka = α²C.</em>
Where, α is the degree of dissociation.
<em>∴ α = √(Ka/C) </em>= √(8.065 x 10⁻⁶/0.45) = <em>4.234 x 10⁻³.</em>
<em>∴ percentage ionization of the acid = α x 100</em> = (4.233 x 10⁻³)(100) = <em>0.4233% ≅ 0.42%.</em>
Answer:
6⅔ shifts
Explanation:
From the question given:
A shift = 4 hours
Pay = $8.25 per hour
Next, we shall determine the number of hours that will result in a pay of $220. This can be obtained as follow:
$8.25 = 1 hour
Therefore,
$220 = $220 × 1 hour / $8.25
$220 = 220/8.25 hours.
$220 = 80/3 hours
$220 = 26⅔ hours
Therefore, it will take 26⅔ hours to receive a pay of $220.
Finally, we shall determine the number of shifts in 26⅔ hours. This can be obtained as follow:
4 hours = 1 shift
Therefore,
26⅔ hours = 26⅔ ÷ 4
26⅔ hours = 80/3 × 1/4
26⅔ hours = 80/12
26⅔ hours = 20/3
26⅔ hours = 6⅔ shifts
Therefore, she will work 6⅔ shifts in order to receive a pay of $220
Increasing the concentration of one or more reactants will often increase the rate of reaction. This occurs because a higher concentration of a reactant will lead to more collisions of that reactant in a specific time period.
Reaction rate increases with concentration, as described by the rate law and explained by collision theory. As reactant concentration increases, the frequency of collision increases. The rate of gaseous reactions increases with pressure, which is, in fact, equivalent to an increase in concentration of the gas.
Atoms with the same number of protons, but different numbers of neutrons are isotopes of the same element.