At the start, the tank contains
(0.02 g/L) * (1000 L) = 20 g
of chlorine. Let <em>c</em> (<em>t</em> ) denote the amount of chlorine (in grams) in the tank at time <em>t </em>.
Pure water is pumped into the tank, so no chlorine is flowing into it, but is flowing out at a rate of
(<em>c</em> (<em>t</em> )/(1000 + (10 - 25)<em>t</em> ) g/L) * (25 L/s) = 5<em>c</em> (<em>t</em> ) /(200 - 3<em>t</em> ) g/s
In case it's unclear why this is the case:
The amount of liquid in the tank at the start is 1000 L. If water is pumped in at a rate of 10 L/s, then after <em>t</em> s there will be (1000 + 10<em>t</em> ) L of liquid in the tank. But we're also removing 25 L from the tank per second, so there is a net "gain" of 10 - 25 = -15 L of liquid each second. So the volume of liquid in the tank at time <em>t</em> is (1000 - 15<em>t </em>) L. Then the concentration of chlorine per unit volume is <em>c</em> (<em>t</em> ) divided by this volume.
So the amount of chlorine in the tank changes according to

which is a linear equation. Move the non-derivative term to the left, then multiply both sides by the integrating factor 1/(200 - 5<em>t</em> )^(5/3), then integrate both sides to solve for <em>c</em> (<em>t</em> ):


![\dfrac{\mathrm d}{\mathrm dt}\left[\dfrac{c(t)}{(200-3t)^{5/3}}\right]=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dt%7D%5Cleft%5B%5Cdfrac%7Bc%28t%29%7D%7B%28200-3t%29%5E%7B5%2F3%7D%7D%5Cright%5D%3D0)


There are 20 g of chlorine at the start, so <em>c</em> (0) = 20. Use this to solve for <em>C</em> :

![\implies\boxed{c(t)=\dfrac1{200}\sqrt[3]{\dfrac{(200-3t)^5}5}}](https://tex.z-dn.net/?f=%5Cimplies%5Cboxed%7Bc%28t%29%3D%5Cdfrac1%7B200%7D%5Csqrt%5B3%5D%7B%5Cdfrac%7B%28200-3t%29%5E5%7D5%7D%7D)
Answer:
x = 13/6
Step-by-step explanation:
We are the following expression;
x - 2(2 - (3/2)*x) = 2(4 - x) + 1
x - (4 - 3*x) = 8 - 2*x + 1
x - 4 + 3*x = 8 - 2*x + 1
4*x + 2*x = 9 + 4
6*x = 13
x = 13/6
Answer:
true
Step-by-step explanation:
PEMDAS order
parenthesis->exponents->multiplication & division->addition & subtraction
To find the mean of a set, add up all of the data points and divide by the number of data points.
For the first set:
(14+18+21+15+17) ÷ 5 = 85 ÷ 5 = 17
For the second set:
(15+17+22+20+16) ÷ 5 = 90 ÷ 5 = 18
To find the MAD (mean absolute deviation) of a set, find the mean of the distances of each data point from the mean.
For the first set:
(3+1+4+2+0) ÷ 5 = 10 ÷ 5 = 2
For the second set:
(3+1+4+2+2) ÷ 5 = 12 ÷ 5 = 2.4
To find the means-to-MAD ratio of a set, divide its mean by its MAD.
For the first set:
17 ÷ 2 = 8.5
For the second set:
18 ÷ 2.4 = 7.5
The independent variable in the relationship is the Number of Months and should be placed on the x-axis (the horizontal axis)
The dependent variable in the relationship is the Number of Fish and should be placed on the y-axis (the vertical axis)
Hope it helps.