1) Change radical forms to fractional exponents using the rule:The n<span>th root of "</span>a number" = "that number" raised to the<span> reciprocal of n.
For example </span>
![\sqrt[n]{3} = 3^{ \frac{1}{n} }](https://tex.z-dn.net/?f=%20%5Csqrt%5Bn%5D%7B3%7D%20%3D%20%20%203%5E%7B%20%5Cfrac%7B1%7D%7Bn%7D%20%7D)
.
The square root of 3 (

) = 3 to the one-half power (

).
The 5th root of 3 (
![\sqrt[5]{3}](https://tex.z-dn.net/?f=%20%5Csqrt%5B5%5D%7B3%7D%20)
) = 3 to the one-fifth power (

).
2) Now use the product of powers exponent rule to simplify:This rule says

. When two expressions with the same base (a, in this example) are multiplied, you
can add their exponents while keeping the same base.
You now have

. These two expressions have the same base, 3. That means you can add their exponents:
3) You can leave it in the form
or change it back into a radical ![\sqrt[10]{3^7}](https://tex.z-dn.net/?f=%20%5Csqrt%5B10%5D%7B3%5E7%7D%20)
------
Answer:
or
Answer:
Yes
Step-by-step explanation:
To figure out if (1,2) is a solution to the system, we can plug the values in and see if it is true.
3x-2y=-1
3(1)-2(2)=-1
3-4=-1
-1=-1
It is true for this equation. Now let's check the next one.
y=-x+3
2=-(1)+3
2=2
Since both equations are true when we plug the values in, (1,2) is a solution to the system.
For this parabola we have:
f ( 0 ) = 8
and : f ( 1 ) = 24
In the first equation ( A) :
f ( 0 ) = - 16 * ( 0 - 1 )² + 24 = - 16 * 1 + 24 = 8 ( correct )
f ( 1 ) = - 16 * ( 1 - 1 )² + 24 = 24 ( correct )
For B:
f ( 0 ) = - 16 * ( 0 + 1 )² + 24 = - 16 + 24 = 8 ( correct )
f ( 1 ) = - 16 * ( 1 + 1 )² + 24 = - 16 * 4 + 24 = - 64 + 24 = 40 ( false )
For C:
f ( 0 ) = - 16 * ( 0 - 1 )² - 24 = - 16 - 24 = - 40 ( false )
f ( 1 ) = - 16 * ( 1 - 1 )² - 24 = - 24 ( false )
For D:
f ( 0 ) = - 16 * ( 0 + 1 )² - 24 = - 16 - 24 = - 40 ( false )
f ( 1 ) = - 16 * ( 1 - 1 )² - 24 = - 24 ( false )
Answer:
A ) f ( t ) = - 16 * ( t - 1 )² + 24
Answer:
0
Step-by-step explanation:
If two events are disjoing (aka mutually exclusive) that means that there is 0 overlap or the intersection equals 0
So the probability of A <em>and </em>B occuring is 0 (because P(A∩B)= 0)