Answer: 1018.26 m/s
Explanation:
Approaching the orbit of the Moon around the Earth to a circular orbit (or circular path), we can use the equation of the speed of an object with uniform circular motion:
Where:
is the speed of travel of the Moon around the Earth
is the Gravitational Constant
is the mass of the Earth
is the distance from the center of the Earth to the center of the Moon
Solving:
This is the speed of travel of the Moon around the Earth
Answer:
You will hear the note E₆
Explanation:
We know that:
Your speed = 88m/s
Original frequency = 1,046 Hz
Sound speed = 340 m/s
The Doppler effect says that:

Where:
f = original frequency
f' = new frequency
v = velocity of the sound wave
v0 = your velocity
vs = velocity of the source, in this case, the source is the diva, we assume that she does not move, so vs = 0.
Replacing the values that we know in the equation we have:

This frequency is close to the note E₆ (1,318.5 Hz)
Transmission of information in ANY form can be done digitally
or analoguely.
Beginning about 30 years ago, everything slowly started changing
to digital. Today, all commercial satellite communication, all optical
fiber communication, all internet communication, all computer
communication, all commercial cable communication, all commercial
television, and much of the telephone system, are all digital.
On your computer ... .pdf, .jpg, .mp3 etc. are all digital methods of
moving and storing information.
AM and FM radio are an interesting subject. They're all still analog.
They could easily be changed to all digital, and it would be a big
improvement, both for the broadcasters and for the listeners.
BUT ... every AM and FM radio that anybody has now would be
obsolete. Every single radio would either need to be replaced,
OR you'd need to add a digital decoder to every radio, like we
had to do with our TV sets a few years ago when television
suddenly became all digital. With AM and FM radios, the decoders
would be bigger, and would cost more, than most of the radios.
And that's why commercial radio broadcasting is still analog.
Answer:
The deceleration is
Explanation:
From the question we are told that
The distance of the car from the crossing is 
The speed is 
The reaction time of the engineer is 
Generally the distance covered during the reaction time is

=> 
=> 
Generally distance of the car from the crossing after the engineer reacts is
=>
=> 
Generally from kinematic equation

Here v is the final velocity of the car which is 0 m/s
So

=>