Answer:
a) V = - x ( σ / 2ε₀)
c) parallel to the flat sheet of paper
Explanation:
a) For this exercise we use the relationship between the electric field and the electric potential
V = - ∫ E . dx (1)
for which we need the electric field of the sheet of paper, for this we use Gauss's law. Let us use as a Gaussian surface a cylinder with faces parallel to the sheet
Ф = ∫ E . dA =
/ε₀
the electric field lines are perpendicular to the sheet, therefore they are parallel to the normal of the area, which reduces the scalar product to the algebraic product
E A = q_{int} /ε₀
area let's use the concept of density
σ = q_{int}/ A
q_{int} = σ A
E = σ /ε₀
as the leaf emits bonnet towards both sides, for only one side the field must be
E = σ / 2ε₀
we substitute in equation 1 and integrate
V = - σ x / 2ε₀
V = - x ( σ / 2ε₀)
if the area of the sheeta is 100 cm² = 10⁻² m²
V = - x (10⁻²/(2 8.85 10⁻¹²) = - x ( 5.6 10⁻¹⁰)
x = 1 cm V = -1 V
x = 2cm V = -2 V
This value is relative to the loaded sheet if we combine our reference system the values are inverted
V ’= V (inf) - V
x = 1 V = 5
x = 2 V = 4
x = 3 V = 3
These surfaces are perpendicular to the electric field lines, so they are parallel to the sheet.
In the attachment we can see a schematic representation of the equipotential surfaces
b) From the equation we can see that the equipotential surfaces are parallel to the sheet and equally spaced
c) parallel to the flat sheet of paper
To become an ocean engineer, the job would require a B<span>achelors degree in ocean engineering.
Hope this helps.</span>
Answer:
180m to the east
Explanation:
Displacement is the distance traveled in a specific direction. It is a vector quantity with both magnitude and direction. Therefore, the start and finish position is very paramount.
point A runs 150m east,
70m west
100m east
150m
--------------------------------------------------------→
70m
←---------------------
100m
-----------------------------------→
The displacement of the athlete = 150 - 80 + 100 = 180m to the east
Based on the list above the correct properties of solids are;
B) has a rigid shape that does not change easily
E) has particles that can wiggle but cannot move
Solids have a variety of properties that make them different from liquids and gasses. Their particles are fixed making them rigid and hard to change shape. The particles also have a low kinetic energy making it hard for the particles to vibrate. In addition to those properties, solids cannot be compressed into smaller sizes.
Answer:
a) The brake force = -535.7N
b) acceleration = - 1.2m/s^2
Explanation: Please find the attached files for the solution.