1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svet-max [94.6K]
4 years ago
14

A 20.0 cm tall object is placed 50.0 cm in front of a convex mirror with a radius of curvature of 34.0 cm. Where will the image

be located, and how tall will it be? Please show all work. Please help
Physics
1 answer:
Neko [114]4 years ago
5 0

Answer:

1.Theimage will be located at -0.13m or -13 cm

2.The height of the image will be 0.052m or 5.2cm

Explanation:

Given that;

Height of object, h=20 cm = 0.2m

Object distance in front of convex mirror, o,= 50 cm =0.5m

Radius of curvature, r, =34 cm =0.34m

Let;

Image distance, i,=?

Image height, h'=?

You know that focal length,f, is half the radius of curvature,hence

f=r/2 = 0.34/2 = 0.17m ( this length is inside the mirror, in a virtual side, thus its is negative)

f= -0.17m

Apply the relationship that involves the focal length;

=\frac{1}{o} +\frac{1}{i} =\frac{1}{f}

=\frac{1}{0.5} +\frac{1}{i} =-\frac{1}{0.17}

Re-arrange to get i

\frac{1}{i} =-2-5.88\\\\\\\frac{1}{i} =-7.88\\\\i=-0.13m

This is a virtual image formed at a negative distance produced through extension of drawing rays behind the mirror if you use rays to locate the image behind the mirror

Apply the magnification formula

magnification, m=height of image÷height of object

m=\frac{h'}{h} =-\frac{i}{o}

substitute the values to get the height of image h'

\frac{h'}{0.20} =-\frac{-0.13}{0.5} \\\\\\h'=\frac{0.13*0.20}{0.5} \\\\\\h'=\frac{0.025}{0.5} =0.052m\\\\\\h'=5.2cm

You might be interested in
8. List three temperature scales. Then write the boiling and freezing
Tomtit [17]

Explanation:

For most temperature scales, the boiling point of water and the freezing point is used to calibrate it.

Three known temperature scales;

  • Kelvin scale
  • Celcius scale
  • Fahrenheit scale

                               Kelvin scale              Celcius scale          Fahrenheit scale

Freezing point             273K                            0°C                        32°F

Melting point                373K                          100°C                     212°F

5 0
2 years ago
What is carbon dioxide?
Bezzdna [24]

Answer:

acidic colorless gas

Explanation:

Carbon dioxide is an acidic colorless gas with a density of about 53% higher than that of dry air. Carbon dioxide molecules consist of a carbon atom covalently double bonded to two oxygen atoms. It occurs naturally in Earth's atmosphere as a trace gas.

4 0
3 years ago
Read 2 more answers
 I will mark you as brainliest if you answer correctly
aleksklad [387]
(A) We can solve the problem by using Ohm's law, which states:
V=IR
where
V is the potential difference across the electrical device
I is the current through the device
R is its resistance
For the heater coil in the problem, we know V=220 V and R=220 \Omega, therefore we can rearrange Ohm's law to find the current through the device:
I= \frac{V}{R}= \frac{220 V}{220 \Omega}=1 A

(B) The resistance of a conductive wire depends on three factors. In fact, it is given by:
R= \rho \frac{L}{A}
where
\rho is the resistivity of the material of the wire
L is the length of the wire
A is the cross-sectional area of the wire
Basically, we see that the longer the wire, the larger its resistance; and the larger the section of the wire, the smaller its resistance.
6 0
3 years ago
What layer is above the troposphere
goldenfox [79]
The stratosphere is the layer above the troposphere 
6 0
3 years ago
Read 2 more answers
An object has a height of 0.066 m and is held 0.210 m in front of a converging lens with a focal length of 0.140 m. (Include the
Anvisha [2.4K]

Explanation:

Given that,

Size of object, h = 0.066 m

Object distance from the lens, u = 0.210 m (negative)

Focal length of the converging lens, f = 0.14 m

If v is the image distance from the lens, we can find it using lens formula as follows :

\dfrac{1}{v}-\dfrac{1}{u}=\dfrac{1}{f}\\\\\dfrac{1}{v}=\dfrac{1}{f}+\dfrac{1}{u}\\\\\dfrac{1}{v}=\dfrac{1}{0.14 }+\dfrac{1}{(-0.21)}\\\\v=0.42\ m

(a) Magnification,

m=\dfrac{v}{u}\\\\m=\dfrac{0.42}{(-0.21)}\\\\m=-2

(b) Magnification, m=\dfrac{h'}{h}

h' is image height

-2=\dfrac{h'}{0.066}\\\\h'=-2\times 0.066\\\\h'=-0.132\ m

Hence, this is the required solution.

4 0
3 years ago
Other questions:
  • If a car takes a banked curve at less than the ideal speed, friction is needed to keep it from sliding toward the inside of the
    13·1 answer
  • If the near-point distance of the jeweler is 22.0 cm, and the focal length of the magnifying glass is 7.70 cm, find the angular
    5·1 answer
  • Which of these is caused by a chemical change?
    5·2 answers
  • A student was producing 75 watts of power while applying a constant force of 225 newtons to slide a box of books 2.0 meters acro
    10·1 answer
  • Sounds travels in a ____ wave A. Transverse B. Compressional C. Surface D. Inverted
    8·1 answer
  • How does the steepness of the line on a speed graph relate to the objects speed
    7·1 answer
  • Interior crocodile alligator i drive a chevrolet movie theater​
    7·2 answers
  • Two skydivers of different masses jump from a plane. explain how their falls compare, including the effects of gravity, mass, an
    5·1 answer
  • What would happen if the louisiana purchase did not double the United States?
    13·1 answer
  • 4. If a 75 kg astronaut moves from Earth to Mars, how much weight did he lose?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!