1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svet-max [94.6K]
3 years ago
14

A 20.0 cm tall object is placed 50.0 cm in front of a convex mirror with a radius of curvature of 34.0 cm. Where will the image

be located, and how tall will it be? Please show all work. Please help
Physics
1 answer:
Neko [114]3 years ago
5 0

Answer:

1.Theimage will be located at -0.13m or -13 cm

2.The height of the image will be 0.052m or 5.2cm

Explanation:

Given that;

Height of object, h=20 cm = 0.2m

Object distance in front of convex mirror, o,= 50 cm =0.5m

Radius of curvature, r, =34 cm =0.34m

Let;

Image distance, i,=?

Image height, h'=?

You know that focal length,f, is half the radius of curvature,hence

f=r/2 = 0.34/2 = 0.17m ( this length is inside the mirror, in a virtual side, thus its is negative)

f= -0.17m

Apply the relationship that involves the focal length;

=\frac{1}{o} +\frac{1}{i} =\frac{1}{f}

=\frac{1}{0.5} +\frac{1}{i} =-\frac{1}{0.17}

Re-arrange to get i

\frac{1}{i} =-2-5.88\\\\\\\frac{1}{i} =-7.88\\\\i=-0.13m

This is a virtual image formed at a negative distance produced through extension of drawing rays behind the mirror if you use rays to locate the image behind the mirror

Apply the magnification formula

magnification, m=height of image÷height of object

m=\frac{h'}{h} =-\frac{i}{o}

substitute the values to get the height of image h'

\frac{h'}{0.20} =-\frac{-0.13}{0.5} \\\\\\h'=\frac{0.13*0.20}{0.5} \\\\\\h'=\frac{0.025}{0.5} =0.052m\\\\\\h'=5.2cm

You might be interested in
A ball bearing of radius of 1.5 mm made of iron of density
Serjik [45]

Answer:

\boxed{\sf Viscosity \ of \ glycerine \ (\eta) = 14.382 \ poise}

Given:

Radius of ball bearing (r) = 1.5 mm = 0.15 cm

Density of iron (ρ) = 7.85 g/cm³

Density of glycerine (σ) = 1.25 g/cm³

Terminal velocity (v) = 2.25 cm/s

Acceleration due to gravity (g) = 980.6 cm/s²

To Find:

Viscosity of glycerine (\sf \eta)

Explanation:

\boxed{ \bold{v =  \frac{2}{9}  \frac{( {r}^{2} ( \rho -  \sigma)g)}{ \eta} }}

\sf \implies \eta =  \frac{2}{9}  \frac{( {r}^{2}( \rho -  \sigma)g )}{v}

Substituting values of r, ρ, σ, v & g in the equation:

\sf \implies \eta =  \frac{2}{9}  \frac{( {(0.15)}^{2}  \times  (7.85 - 1.25) \times 980.6)}{2.25}

\sf \implies \eta =  \frac{2}{9}  \frac{(0.0225 \times 6.6 \times 980.6)}{2.25}

\sf \implies \eta =  \frac{2}{9}  \times  \frac{145.6191}{2.25}

\sf \implies \eta =  \frac{2}{9}  \times 64.7196

\sf \implies \eta =  2 \times 7.191

\sf \implies \eta =  14.382 \: poise

6 0
3 years ago
A U-shaped tube open to the air at both ends contains some mercury. A quantity of water is carefully poured into the left arm of
Gekata [30.6K]

Answer:

a) P=2450\ Pa

b) \delta h=23.162\ cm

Explanation:

Given:

height of water in one arm of the u-tube, h_w=25\ cm=0.25\ m

a)

Gauge pressure at the water-mercury interface,:

P=\rho_w.g.h_w

we've the density of the water =1000\ kg.m^{-3}

P=1000\times 9.8\times 0.25

P=2450\ Pa

b)

Now the same pressure is balanced by the mercury column in the other arm of the tube:

\rho_w.g.h_w=\rho_m.g.h_m

1000\times 9.8\times 0.25=13600\times 9.8\times h_m

h_m=0.01838\ m=1.838\ cm

<u>Now the difference in the column is :</u>

\delta h=h_w-h_m

\delta h=25-1.838

\delta h=23.162\ cm

7 0
3 years ago
When did robert fulton invent the steamboat
bekas [8.4K]

Answer:

1807

Explanation:

Robert Fulton (1765–1815) was an American engineer and inventor who is widely known for developing a commercially successful steamboat called Clermont. In 1807, that steamboat took passengers from New York City to Albany and back again, a round trip of 300 miles, in 62 hours.

7 0
3 years ago
It takes 15 min to drive 6.0 mi in a straight line to the local hospital. It takes 10 min to go the last 3.0 mi, 2.0 min to go t
Gala2k [10]

Answer:

36.87 km/h

Explanation:

Convert all the units in SI system

1 mile = 1609.34 m

d1 = 6 mi = 9656.04 m

t1 = 15 min = 15 x 60 = 900 s

d2 = 3 mi = 4828.02 m

t2 = 10 min = 10 x 60 = 600 s

d3 = 1 mi = 1609.34 m

t3 = 2 min = 2 x 60 = 120 s

d4 = 0.5 mi = 804.67 m

t4 = 0.5 min = 0.5 x 60 = 30 s

Total distance, d = d1 + d2 + d3 + d4

d = 9656.04 + 4828.02 +  1609.34 + 804.67 = 16898.07 m = 16.898 km

total time, t = t1 + t2 + t3 + t4

t = 900 + 600 + 120 + 30 = 1650 s = 0.4583 h

The ratio of the total distance covered to the total time taken is called average speed.

Average speed = 16.898 / 0.4583 = 36.87 km/h

6 0
3 years ago
Which of the following lists the elements in order, from those having the least protons to those having the most protons in the
Tema [17]

Answer:

C

Explanation:

O has 8   protones,S  tiene 16, Se 34 y Te 52.

6 0
3 years ago
Read 2 more answers
Other questions:
  • A bar of metal had a volume of 4.5 cm^3 and a mass of 33 g. what is the density of the metal?
    6·1 answer
  • The expression below was formed by combining different gas laws.
    8·1 answer
  • A bowling ball collides with a pin, knocking it over. The ball continues to move
    6·1 answer
  • Explain how rock D is the best rock
    5·1 answer
  • Polly is pushing a box across the floor with a force of 30 n. the force of gravity is –8 n, and the normal force is 8 n. which v
    6·2 answers
  • On the other side of the gorge, at the highest point of his swing, the vine makes an angle of \theta=40^\circθ=40 ​∘ ​​ from the
    5·1 answer
  • The amount of power required to move an object can be increased without changing the
    10·1 answer
  • PLEASE HELP ASAP
    11·1 answer
  • The diagram below represents a structure in the cell
    15·1 answer
  • An elevator is moving is an upwards
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!