1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cluponka [151]
3 years ago
6

Candy Crunchers wants to see if their new candy is enjoyed more by high school or middle school students. They decide to visit o

ne middle school and one high school in Miami, FL. After interviewing the students at each school, they determine that high school students like their candy more than the middle school students do. What is the sample of the population? All students who attend one middle school and one high school in Miami, FL All students who attend middle school or high school in the country All students who attend middle school or high school in Miami, FL All students who attend middle school or high school in Florida
Mathematics
2 answers:
Goryan [66]3 years ago
5 0

all students who attend 1 MS and 1 HS in Miami, FL.

This is because they only surveyed 1 ms and 1 hs


Good luck! please vote me brainliest

Nesterboy [21]3 years ago
4 0

Answer: every student who attends 1 MS and 1 HS

Step-by-step explanation:

You might be interested in
Question 1
drek231 [11]

QUESTION 1

We want to expand (x-2)^6.


We apply the binomial theorem which is given by the  formula

(a+b)^n=^nC_0a^nb^0+^nC_1a^{n-1}b^1+^nC_2a^{n-2}b^2+...+^nC_na^{n-n}b^n.

By comparison,

a=x,b=-2,n=6.


We substitute all these values to obtain,


(x-2)^6=^6C_0x^6(-2)^0+^6C_1x^{6-1}(-2)^1+^6C_2x^{6-2}(-2)^2+^6C_3x^{6-3}(-2)^3+^6C_4x^{6-4}(-2)^4+^6C_5x^{6-5}(-2)^5+^6C_6x^{6-6}(-2)^6.


We now simplify to obtain,

(x-2)^6=^nC_0x^6(-2)^0+^6C_1x^{5}(-2)^1+^6C_2x^{4}(-2)^2+^6C_3x^{3}(-2)^3+^6C_4x^{2}(-2)^4+^6C_5x^{1}(-2)^5+^6C_6x^{0}(-2)^6.

This gives,

(x-2)^6=x^6-12x^{5}+60x^{4}-160x^{3}(-2)^3+240x^{2}-1925x+64.


Ans:C

QUESTION 2


We want to expand

(x+2y)^4.


We apply the binomial theorem to obtain,


(x+2y)^4=^4C_0x^4(2y)^0+^4C_1x^{4-1}(2y)^1+^4C_2x^{4-2}(2y)^2+^4C_3x^{4-3}(2y)^3+^4C_4x^{4-4}(2y)^4.


We simplify to get,


(x+2y)^4=x^4(2y)^0+4x^{3}(2y)^1+6x^{2}(2y)^2+4x^{1}(2y)^3+x^{0}(2y)^4.


We simplify further to obtain,


(x+2y)^4=x^4+8x^{3}y+24x^{2}y^2+32x^{1}y^3+16y^4


Ans:B


QUESTION 3

We want to find the number of terms in the binomial expansion,

(a+b)^{20}.


In the above expression, n=20.


The number of terms in a binomial expression is (n+1)=20+1=21.


Therefore there are 21 terms in the binomial expansion.


Ans:C


QUESTION 4


We want to expand

(x-y)^4.


We apply the binomial theorem to obtain,


(x-y)^4=^4C_0x^4(-y)^0+^4C_1x^{4-1}(-y)^1+^4C_2x^{4-2}(2y)^2+^4C_3x^{4-3}(-y)^3+^4C_4x^{4-4}(-y)^4.


We simplify to get,


(x+2y)^4=^x^4(-y)^0+4x^{3}(-y)^1+6x^{2}(-y)^2+4x^{1}(-y)^3+x^{0}(-y)^4.


We simplify further to obtain,


(x+2y)^4=x^4-4x^{3}y+6x^{2}y^2-4x^{1}y^3+y^4


Ans: C


QUESTION 5

We want to expand (5a+b)^5


We apply the binomial theorem to obtain,

(5a+b)^5=^5C_0(5a)^5(b)^0+^5C_1(5a)^{5-1}(b)^1+^5C_2(5a)^{5-2}(b)^2+^5C_3(5a)^{5-3}(b)^3+^5C_4(5a)^{5-4}(b)^4+^5C_5(5a)^{5-5}(b)^5.


We simplify to obtain,

(5a+b)^5=^5C_0(5a)^5(b)^0+^5C_1(5a)^{4}(b)^1+^5C_2(5a)^{3}(b)^2+^5C_3(5a)^{2}(b)^3+^5C_4(5a)^{1}(b)^4+^5C_5(5a)^{0}(b)^5.


This finally gives us,


(5a+b)^5=3125a^5+3125a^{4}b+1250a^{3}b^2+^250a^{2}(b)^3+25a(b)^4+b^5.


Ans:B

QUESTION 6

We want to expand (x+2y)^5.

We apply the binomial theorem to obtain,

(x+2y)^5=^5C_0(x)^5(2y)^0+^5C_1(x)^{5-1}(2y)^1+^5C_2(x)^{5-2}(2y)^2+^5C_3(x)^{5-3}(2y)^3+^5C_4(x)^{5-4}(2y)^4+^5C_5(x)^{5-5}(2y)^5.


We simplify to get,


(x+2y)^5=^5C_0(x)^5(2y)^0+^5C_1(x)^{4}(2y)^1+^5C_2(x)^{3}(2y)^2+^5C_3(x)^{2}(2y)^3+^5C_4(x)^{1}(2y)^4+^5C_5(x)^{0}(2y)^5.


This will give us,

(x+2y)^5=x^5+^10(x)^{4}y+40(x)^{3}y^2+80(x)^{2}y^3+80(x)y^4+32y^5.


Ans:A


QUESTION 7

We want to find the 6th term  of (a-y)^7.


The nth term is given by the formula,

T_{r+1}=^nC_ra^{n-r}b^r.

Where r=5,n=7,b=-y


We substitute to obtain,


T_{5+1}=^7C_5a^{7-5}(-y)^5.


T_{6}=-21a^{2}y^5.


Ans:D


QUESTION 8.

We want to find the 6th term of (2x-3y)^{11}


The nth term is given by the formula,

T_{r+1}=^nC_ra^{n-r}b^r.

Where r=5,n=11,a=2x,b=-3y


We substitute to obtain,


T_{5+1}=^{11}C_5(2x)^{11-5}(-3y)^5.


T_{6}=-7,185,024x^{6}y^5.


Ans:D

QUESTION 9

We want to find the 6th term  of (x+y)^8.


The nth term is given by the formula,

T_{r+1}=^nC_ra^{n-r}b^r.

Where r=5,n=8,a=x,b=y


We substitute to obtain,


T_{5+1}=^8C_5(x)^{8-5}(y)^5.


T_{6}=56a^{3}y^5.


Ans: A


We want to find the 7th term  of (x+4)^8.


The nth term is given by the formula,

T_{r+1}=^nC_ra^{n-r}b^r.

Where r=6,n=8,a=x,b=4


We substitute to obtain,


T_{6+1}=^8C_5(x)^{8-6}(4)^6.


T_{7}=114688x^{2}.


Ans:A





4 0
3 years ago
How do I do 1. e) PLEASE HELP I’LL GIVE BRAINEST
Papessa [141]

Answer:

It goes like this

Step-by-step explanation:

\frac{5}{6}

\frac{6}{7}

\frac{7}{8}

U can see the sequence

6 0
3 years ago
Read 2 more answers
Please Help!<br>i really need help with this!<br><br>​
11Alexandr11 [23.1K]

Answer:

11,5 cm or 23 squares

Step-by-step explanation:

draw a cartesian graph and put on the coordinates given then use a ruler

7 0
3 years ago
Write an addition equation with a positive addend and a negative addend and a resulting sum of -8
Airida [17]
There's an infinite number of solutions. here's a few.
1+-9=-8
2+-10=-8
3+-11=-8
4+-12=-8
5+-13=-8
6+-14=-8

3 0
3 years ago
A line passes through the point (4, –2) and has a slope of One-half.
dalvyx [7]

Answer:

-6

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Ms. tucker travels through two intersections with traffic lights as she drives to the market. the traffic lights operate indepen
    5·1 answer
  • What is the rate of change for this problem??
    12·1 answer
  • Determine the minimum value of f(x, y, z) = 2x 2 + y 2 + 2z 2 + 5 subject to the constraint 3x + 2y + 3z = 4. +
    12·1 answer
  • Simplify 3(2x-7y)+2(2x+3)=
    8·1 answer
  • The revenue each season from tickets at the theme part is represented by t(x) = 3x. The cost to pay the employees each season is
    9·2 answers
  • What is the main difference when finding an inverse and solving a square root equation?
    5·2 answers
  • How are independent and dependent variables different
    15·1 answer
  • What is the solution for -3x ≥ 36?
    13·2 answers
  • A car covers a distance of 60 km in half an hour . What is he average speed of the car?And with short solution.
    5·1 answer
  • (6,0)<br> (0,2)<br> (3,8)<br> (5,5)
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!