When you attract every object in the universe with a force that is proportional to the mass of the objects and to the distance between them, we are obeying Newton's law of universal gravitation.
<h3>Newton's law of universal gravitation</h3>
Newton's law of universal gravitation states that the force of attraction between two masses in the universe is directly proportional to the product of the masses and inversely proportional to the the square of the distance between them.
The mathematical interpretation of the above law is
Removing the proportionality sign,
Where:
- F = Force of attraction
- G = Gravitational constant
- M = Bigger mass
- m = Smaller mass
- r = Distance between the masses.
From the above, When you attract every object in the universe with a force that is proportional to the mass of the objects and to the distance between them, we are obeying Newton's law of universal gravitation.
Learn more about Newton's law of universal gravitation here: brainly.com/question/9373839
#SPJ12
Answer:
B = 0.157 T
Explanation:
Given that,
Length of the solenoid, l = 8 cm = 0.08 m
Number of turns in the wire, N = 2000
Current, I = 5 A
We need to find the strength of the magnetic field at the center of the solenoid. It is given by the formula as follows :
, N is number of turns per unit length of solenoid.
So,

So, the magnetic field at the center of the solenoid is 0.157 T.
Answer:
2 m/s
Explanation: Given that a flatbed car of a train moves 8 m/s to the east. A jogger runs along to top the flatbed car (which is not very safe) with a velocity of 6 m/s to the west.
Since the jogger is moving in an opposite direction to the direction of the train, and velocity is the distance covered in a specific direction, the jogger will be moving at a velocity relative to the velocity of the train.
Velocity = (8 - 6) m/s
Velocity = 2 m/s
Therefore, the jogger will be moving at the speed of 2 m/s
Now, moving the Moon closer to the Earth will increase the gravitational exertion of the satellite onto our planet. If the satellite were slightly closer, the tidal bulge would grow. Low tideswould be lower and high tideswould be higher and any low lying coastline would be flooded.