Answer: 0.01 m
Explanation: The formulae for capillarity rise or fall is given below as
h = (2T×cosθ)/rpg
Where θ = angle mercury made with glass = 50°
T = surface tension = 0.51 N/m
g = acceleration due gravity = 9.8 m/s²
r = radius of tube = 0.5mm = 0.0005m
p = density of mercury.
h = height of rise or fall
From the question, specific gravity of density = 13.3
Where specific gravity = density of mercury/ density of water, where density of water = 1000 kg/m³
Hence density of mercury = 13.3×1000 = 13,300 kg/m³.
By substituting parameters, we have that
h = 2×0.51×cos 50/0.0005×9.8×13,300
h = 0.6556/65.17
h = 0.01 m
1.) appearance
2.)texture
3.)color
4.)melting point
5.)odor
Answer:
So coefficient of kinetic friction will be equal to 0.4081
Explanation:
We have given mass of the block m = 0.5 kg
The spring is compressed by length x = 0.2 m
Spring constant of the sprig k = 100 N/m
Blocks moves a horizontal distance of s = 1 m
Work done in stretching the spring is equal to 
This energy will be equal to kinetic energy of the block
And this kinetic energy must be equal to work done by the frictional force
So 


So coefficient of kinetic friction will be equal to 0.4081
Answer:he's not applying force or motion
Explanation:
p=f & m
Answer:
v = 46.67 km/h
Explanation:
We will use the following formula throughout this numerical:
s = vt
where,
s = distance covered
v = speed
t = time taken
<u>FOR FIRST 30 km:</u>
s = 30 km
v = 30 km/h
t = t₃₀ = ?
Therefore,
30 km = (30 km/h)(t₃₀)
t₃₀ = (30 km)/(30 km/h)
t₃₀ = 1 h
<u>FOR TOTAL 100 km:</u>
s = 100 km
v = 40 km/h (Average Speed)
t = total time = ?
Therefore,
100 km = (40 km/h)(t)
t = (100 km)/(40 km/h)
t = 2.5 h
<u>FOR LAST 70 km:</u>
s = 70 km
t₇₀ = t - t₃₀ = 2.5 h - 1 h = 1.5 h
v = v₇₀ = ?
Therefore,
70 km = v(1.5 h)
v = 70 km/1.5 h
<u>v = 46.67 km/h</u>