Your answer would be,
Molarity = moles of solute/volume of solution we needed, 29.22(g)(mol) of NaCI
= 29.22(g)/58.44(g)(mol^-1)(1)/1(L)
= 0.500(mol)(L^-1)
Hope that helps!!!
___________________________________________________________
Answer:
Chemical reactions that take place inside living things are called biochemical reactions. The sum of all the biochemical reactions in an organism is referred to as metabolism. Metabolism includes both exothermic (heat-releasing) chemical reactions and endothermic (heat-absorbing) chemical reactions.
___________________________________________________________
Answer:
2.5L [NaCl] concentrate needs to be 4.8 Molar solution before dilution to prep 10L of 1.2M KNO₃ solution.
Explanation:
Generally, moles of solute in solution before dilution must equal moles of solute after dilution.
By definition Molarity = moles solute/volume of solution in Liters
=> moles solute = Molarity x Volume (L)
Apply moles before dilution = moles after dilution ...
=> (Molarity X Volume)before dilution = (Molarity X Volume)after dilution
=> (M)(2.5L)before = (1.2M)(10.0L)after
=> Molarity of 2.5L concentrate = (1.2M)(10.0L)/(2.5L) = 4.8 Molar concentrate
Answer:
N-Cl
Explanation:
Look at the chart below. Since N-Cl bond has a electronegativity difference of (3.0-3.0) zero, they are non-polar.
<span>The Lewis structure for CO has 10 valence electrons. For the CO Lewis structure you'll need a triple bond between the Carbon and Oxygen atoms in order to satisfy the octets of each atom while still using the 10 valence electrons available for the CO molecule.</span>