Answer:
H₂O.
Explanation:
- It is clear from the balanced equation:
<em>CH₄ + 2H₂O → CO₂ + 4H₂.</em>
that 1.0 mole of CH₄ reacts with 2.0 moles of H₂O to produce 1.0 mole of CO₂ and 4.0 moles of H₂.
- To determine the limiting reactant, we should calculate the no. of moles of (20 g) CH₄ and (15 g) H₂O using the relation:
<em>n = mass/molar mass</em>
<em></em>
no. of moles of CH₄ = mass/molar mass = (20 g)/(16 g/mol) = 1.25 mol.
no. of moles of H₂O = mass/molar mass = (15 g)/(18 g/mol) = 0.833 mol.
- <em>from the balanced reaction, 1.0 mole of CH₄ reacts with 2.0 moles of H₂O.</em>
So, from the calculated no. of moles: 0.4167 mole of CH₄ reacts completely with 0.833 mole of H₂O and the remaining of CH₄ will be in excess.
<u><em>So, the limiting reactant is H₂O.</em></u>
I dont get it someone please help
I think that the empirical formula is mgcl2
Answer: Option (c) is the correct answer.
Explanation:
It is known that when we tend to dilute an impure product with too much of solvent then it will lead to dissolution of the solute. As a result, the chances of formation of crystal reduces.
And, when we increase the temperature then there will occur increase in the number of collisions between the solute and solvent molecules.
Hence, solubility of the solute also increases with increase in temperature, placing it on ice bath will further reduce the crystal formation, hence no crystal should be formed in the reaction.
Thus, we can conclude that the result of crystals boiling the impure product with too much solvent and then cooling on ice is that no crystals are produced.
Answer: Increase the rate of surface water evaporation
Irrigation is a process, in which the crops are supplied with water, to ensure their proper growth. Increased in the irrigation supply can be because of the environmental conditions like hot summer season or may be because of the type of soil is semi arid or arid means the soil does not retains moisture efficiently. This will result in increase in the rate of evaporation of the surface water.