Answer:
B) sand
Explanation:
A) Oil is a wrong choice because it is a liquid not a solid and also if it is oil, it will float over the water surface as a droplets.
B) Sand is the right choice, because sand is a solid and it does not dissolve in water and stabilizes at the bottom.
C) Sugar is a wrong choice, because small amount of sugar will dissolve in water and be a homogeneous solution and does not appear as a particles.
D) Wood ships is also a wrong choice, even it is a solid and does not dissolve in water, but it will float over the water surface.
Answer:
bond angles of 120 degrees.
Answer: <u><em>Option B; It traps light energy and converts it into chemical energy.</em></u>
<h2>
Explanation: This substance is chlorophyll. It is a pigment present in leaves of all plants. It absorbs light energy and provides it to carry out the process of photosynthesis. Light energy is converted into chemical energy, in form of NADPH and ATP, which can be used by plants for photosynthesis.</h2><h2>
</h2><h2>
This pigment is present only in plants, so option A is incorrect.</h2><h2>
</h2><h2>
This pigment only absorbs and transfers energy to other molecules, and is not associated with carbon dioxide directly, so option C and D are also incorrect.</h2>
Answer:
Salt water is, A. a mixture
Answer:
pH = 3.3
Explanation:
Buffer solutions minimize changes in pH when quantities of acid or base are added into the mix. The typical buffer composition is a weak electrolyte (wk acid or weak base) plus the salt of the weak electrolyte. On addition of acid or base to the buffer solution, the solution chemistry functions to remove the acid or base by reacting with the components of the buffer to shift the equilibrium of the weak electrolyte left or right to remove the excess hydronium ions or hydroxide ions is a way that results in very little change in pH of the system. One should note that buffer solutions do not prevent changes in pH but minimize changes in pH. If enough acid or base is added the buffer chemistry can be destroyed.
In this problem, the weak electrolyte is HNO₂(aq) and the salt is KNO₂(aq). In equation, the buffer solution is 0.55M HNO₂ ⇄ H⁺ + 0.75M KNO₂⁻ . The potassium ion is a spectator ion and does not enter into determination of the pH of the solution. The object is to determine the hydronium ion concentration (H⁺) and apply to the expression pH = -log[H⁺].
Solution using the I.C.E. table:
HNO₂ ⇄ H⁺ + KNO₂⁻
C(i) 0.55M 0M 0.75M
ΔC -x +x +x
C(eq) 0.55M - x x 0.75M + x b/c [HNO₂] / Ka > 100, the x can be
dropped giving ...
≅0.55M x ≅0.75M
Ka = [H⁺][NO₂⁻]/[HNO₂] => [H⁺] = Ka · [HNO₂]/[NO₂⁻]
=> [H⁺] = 6.80x010⁻⁴(0.55) / (0.75) = 4.99 x 10⁻⁴M
pH = -log[H⁺] = -log(4.99 x 10⁻⁴) -(-3.3) = 3.3
Solution using the Henderson-Hasselbalch Equation:
pH = pKa + log[Base]/[Acid] = -log(Ka) + log[Base]/[Acid]
= -log(6.8 x 10⁻⁴) + log[(0.75M)/(0.55M)]
= -(-3.17) + 0.14 = 3.17 + 0.14 = 3.31 ≅ 3.3