Answer:
Like other legumes, peanut plants improve the soil by adding nitrogen, even as they grow tasty, nutritious nuts for this season's harvest. But peanuts need help as they take nitrogen from the air and "fix" it into the soil via their root systems.
Explanation:
Following chemical reaction is involved upon titration of Ca(OH)2 with HCl,
Ca(OH)2 + 2HCl ↔ CaCL2 + 2H2O
Above is an example of acid-base titration to generate salt and water. Here, H+ ions of acid (HCl) combines with OH- (ions) of base [Ca(OH)2] to generated H2O
Given,
concentration of HCl = 0.0199 M
Total volume of HCl consumed during titration = 16.08 mL = 16.08 X 10^(-3) L
∴, number of moles of H+ consumed = Molarity X Vol. of HCl (in L)
= 0.0199 X 16.08 X 10^(-3)
= 3.1999 X 10^-4 mol
Thus, total number of moles of [OH-] ions present initial = 3.1999 X 10-4 mol
So, initial conc. [OH-] ion = ![\frac{number of moles of [OH-]}{volume of solution (L)}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bnumber%20of%20moles%20of%20%5BOH-%5D%7D%7Bvolume%20of%20solution%20%28L%29%7D%20)
=

= 0.03199 M
Answer:
pH 9,8 is likely to work best for this separation
Explanation:
Ion exchange chromatography is a chemical process where molecules are separated by affinity to an ion exchange resin. To separate different aminoacids you must use the isoelectric point (That is the pH where the aminoacid will be in its neutral form).
For lysine, PI is:
9,8
For arginine:
10,75
At pH = 9,8 lysine will be in its neutral form and will not be retain in the column but arginine will be in +1 charge being retained by the ion exchange resin.
Thus, <em>pH 9,8 is likely to work best for this separation</em>
<em></em>
I hope it helps!