Answer:
Mitochondria are abundantly present in mammalian cells. Their fraction varies from tissue to tissue, ranging from <1% (volume) in white blood cells to 35% in heart muscle cells. However, mitochondria should not be thought of as single entities, but rather a dynamic network that continuously undergoes fission and fusion processes. In skeletal muscle, mitochondria exist as a reticular membrane network. The subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria are located in distinct subcellular regions, and they possess subtle differences in biochemical and functional properties that are characterized by their anatomical locations. SS mitochondria lie directly beneath the sarcolemmal membrane and the IMF mitochondria are located in close contact with the myofibril. Their different properties are likely to influence their capacity for adaptation. SS mitochondria account for 10-15% of the mitochondrial volume and this population has been shown to be more susceptible to adaptation than the IMF mitochondria. However, the IMF mitochondria were found to have higher rates of protein synthesises, enzyme activities and respiration (1).
Explanation:
Answer:
<h3>The man's average body temp. will fall by 0.6°C to 38.4°C</h3>
Explanation:
The enthalpy (heat content) of the water, using a datum of 0°C, is
Hw = Mw kg x Cp,w (specific heat capacity kJ/kg °C) x Tw °C
= 1 kg x 4.18 kJ/kg°C x 3°C = 12.5 kJ
Hman (pre drink) = 68 kg x 3.6 kJ/kg/°C x 39°C = 9547 kJ
So Hman (post drink) = H (pre drink) + Hw = 9547 + 12.5 = 9559.5 kJ because no heat is lost immediately.
But Hman (after drink) has mass 68 + 1 = 69 kg
Also his new Cp will be approx (3.6 x 68/69) + (4.18 x 1/69) = 3.608 kJ/kg°C
So Hman = 9559.5 kJ (from above) = 69 kg x 3.608 kJ/kg°C x Tnew
Therefore the man's new overall temp. = 38.4°C which is a drop of 0.6°C
Answer:
O3 => CLO + O2
Explanation:
ozone gas yields one Chlorine Monoxide gas, and two Oxygen gas. i forgot how to explain it well, but I know how to do it and will help in the future if needed :)
<span>
The substance that needs more energy to undergo an increase of 25°C will
have a higher specific heat, because energy depends directly on
specific heat.
Q = cm∆T
where c = specific heat of the substance,
m = mass
∆T = temperature difference </span>