let's set up an equation
4x=24
solve normally:
x=6
so the expression is 4x=24 and she can have 6 kids in each group
What do the places mean? I’d say the signs are negative since both values are (-3) and (-5), but i don’t know what you mean by placed - if they were placed in a number line, it would go 3 and 5 values left or down.
Use cos sin and tan and looks up rules of cos sin tan and it will show you the rules and use those methods to plug into your equation
<h3>Answer:</h3>
Equation of the ellipse = 3x² + 5y² = 32
<h3>Step-by-step explanation:</h3>
<h2>Given:</h2>
- The centre of the ellipse is at the origin and the X axis is the major axis
- It passes through the points (-3, 1) and (2, -2)
<h2>To Find:</h2>
- The equation of the ellipse
<h2>Solution:</h2>
The equation of an ellipse is given by,

Given that the ellipse passes through the point (-3, 1)
Hence,

Cross multiplying we get,
- 9b² + a² = 1 ²× a²b²
- a²b² = 9b² + a²
Multiply by 4 on both sides,
- 4a²b² = 36b² + 4a²------(1)
Also by given the ellipse passes through the point (2, -2)
Substituting this,

Cross multiply,
- 4b² + 4a² = 1 × a²b²
- a²b² = 4b² + 4a²-------(2)
Subtracting equations 2 and 1,
- 3a²b² = 32b²
- 3a² = 32
- a² = 32/3----(3)
Substituting in 2,
- 32/3 × b² = 4b² + 4 × 32/3
- 32/3 b² = 4b² + 128/3
- 32/3 b² = (12b² + 128)/3
- 32b² = 12b² + 128
- 20b² = 128
- b² = 128/20 = 32/5
Substituting the values in the equation for ellipse,


Multiplying whole equation by 32 we get,
3x² + 5y² = 32
<h3>Hence equation of the ellipse is 3x² + 5y² = 32</h3>
Answer:
1) (x + 3)(3x + 2)
2) x= +/-root6 - 1 by 5
Step-by-step explanation:
3x^2 + 11x + 6 = 0 (mid-term break)
using mid-term break
3x^2 + 9x + 2x + 6 = 0
factor out 3x from first pair and +2 from the second pair
3x(x + 3) + 2(x + 3)
factor out x+3
(x + 3)(3x + 2)
5x^2 + 2x = 1 (completing squares)
rearrange the equation
5x^2 + 2x - 1 = 0
divide both sides by 5 to cancel out the 5 of first term
5x^2/5 + 2x/5 - 1/5 = 0/5
x^2 + 2x/5 - 1/5 = 0
rearranging the equation to gain a+b=c form
x^2 + 2x/5 = 1/5
adding (1/5)^2 on both sides
x^2 + 2x/5 + (1/5)^2 = 1/5 + (1/5)^2
(x + 1/5)^2 = 1/5 + 1/25
(x + 1/5)^2 = 5 + 1 by 25
(x + 1/5)^2 = 6/25
taking square root on both sides
root(x + 1/5)^2 = +/- root(6/25)
x + 1/5 = +/- root6 /5
shifting 1/5 on the other side
x = +/- root6 /5 - 1/5
x = +/- root6 - 1 by 5
x = + root6 - 1 by 5 or x= - root6 - 1 by 5