Both diamond and graphite are allotropes of carbon. Diamond has a high tensile strength but graphite does not.
<h3>What is a molecular model?</h3>
A molecular model is used to describe the actual behavior of a chemical compound based on the kind of bonds that exists in the molecule. Now we are talking about diamond and graphite.
Graphite is composed of hexagonal rings of carbon atoms that form layers that are held together by weak Van Der Walls forces hence they can slide over each other. This is the reason why graphite does not have a high tensile strength.
On the other hand, diamond is made up of octagonal rings of carbon atoms which are rigid and form a strong covalent network solid that explains why graphite has a high tensile strength.
Learn more about diamond and graphite:brainly.com/question/8853712
#SPJ1
Answer:
Carbon atoms in graphite and diamond are arranged in different ways. Hence, the two allotropes of carbon have different physical properties.
Explanation:
Both graphite and diamond are both made of only carbon atoms. However, their physical properties differ from each other. Hence, they are called allotropes. Think about how these carbon atoms are arranged in each of the allotropes.
<h3>Graphite</h3>
In graphite, each carbon atom is bonded to three other carbon atoms. These carbon atoms will be located in the same plane. A chunk of graphite can contain many of these planes.
Each carbon atom has four valence electrons. Three of these electrons will be used in the bonds. The other electron will be delocalized. These electrons would flow between the sheets of carbon atoms. That keeps the sheets separate and allow them to slide on top of each other.
<h3>Diamond</h3>
In diamond, each carbon atom is bonded to four other carbon atoms. These carbon atoms will form a tetrahedral network.
In graphite, there's a significant separation between two adjacent sheets of carbon atoms. The force between the two sheets is rather weak. When a piece of graphite is between two objects that move over one another, the layers in the graphite would also slide over one another. Since the attraction between two adjacent sheets isn't very strong, there wouldn't be much resistance. Hence the graphite acts as a lubricant.
In contrast, most of the carbon atoms in a piece of diamond would be connected to each other. Unlike the sheets in graphite, in a diamond there are almost no moving parts. Also, the forces between neighboring carbon atoms are very strong. When an external force acts on a chunk of diamond, the carbon atoms would barely move. Hence, the structure appears to be very rigid. That gives diamond its abrasive properties.
False
Explanation:
Carbon atoms are found in hydrocarbons, naturally occurring compound with carbon and hydrogen, but there are molecules in nature that contain beside carbon and hydrogen, oxygen and nitrogen too. In this compounds there are carbon-oxygen and carbon-nitrogen covalent bonds.
Bellow you may see the chemical structure of adrenaline, a hormon found in the human body, were the oxygen (red) and nitrogen (blue) are bonded to carbon.
Learn more about:
structure of organic compounds
brainly.com/question/14118299
#learnwithBrainly
At room temperature hydrogen chloride is a colorless gas with a sharp or pungent odor. Under pressure or at temperatures below –85°C (-121°F), it is a clear liquid.
Answer:
650 mmol.
Explanation:
The equation for the fermentation of one mole of glucose is:
C₆H₁₂O₆ + 2 NAD⁺ + 2 ADP + 2 P i + 2 NADH → 2 EtOH + 2 ATP + 2 NADH + 2 NAD⁺
Since NAD⁺/NADH is used and regenerated, we can eliminate it from the equation:
C₆H₁₂O₆ + 2 ADP + 2 P i → 2 EtOH + 2 ATP
With the equation, we calculate the maximum amount of ethanol that could be obtained theoretically:
1000 mmol C₆H₁₂O₆ ------------ 2000 mmol EtOH
325 mmol C₆H₁₂O₆ ------------- x= 650 mmol EtOH
Therefore, the maximum amount of ethanol that could be produced is 650 mmol.