Non living things are abiotic so sand is abiotic
Answer:
The concentration of I at equilibrium = 3.3166×10⁻² M
Explanation:
For the equilibrium reaction,
I₂ (g) ⇄ 2I (g)
The expression for Kc for the reaction is:
![K_c=\frac {\left[I_{Equilibrium} \right]^2}{\left[I_2_{Equilibrium} \right]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%20%7B%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%7D%7B%5Cleft%5BI_2_%7BEquilibrium%7D%20%5Cright%5D%7D)
Given:
= 0.10 M
Kc = 0.011
Applying in the above formula to find the equilibrium concentration of I as:
![0.011=\frac {\left[I_{Equilibrium} \right]^2}{0.10}](https://tex.z-dn.net/?f=0.011%3D%5Cfrac%20%7B%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%7D%7B0.10%7D)
So,
![\left[I_{Equilibrium} \right]^2=0.011\times 0.10](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%3D0.011%5Ctimes%200.10)
![\left[I_{Equilibrium} \right]^2=0.0011](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%3D0.0011)
![\left[I_{Equilibrium} \right]=3.3166\times 10^{-2}\ M](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%3D3.3166%5Ctimes%2010%5E%7B-2%7D%5C%20M)
<u>Thus, The concentration of I at equilibrium = 3.3166×10⁻² M</u>
First, we have to get how many grams of C & H & O in the compound:
- the mass of C on CO2 = mass of CO2*molar mass of C /molar mass of CO2
= 0.5213 * 12 / 44 = 0.142 g
- the mass of H atom on H2O = mass of H2O*molar mass of H / molar mass of H2O
=0.2835 * 2 / 18 = 0.0315 g
- the mass of O = the total mass - the mass of C atom - the mass of H atom
= 0.3 - 0.142 - 0.0315 = 0.1265 g
Convert the mass to mole by divided by molar mass
C(0.142/12) H(0.0315/2) O(0.1265/16)
C(0.0118) H(0.01575) O(0.0079) by dividing by the smallest value 0.0079
C1.504 H3.99 O1 by rounding to the nearst fraction
C3/2 H4/1 )1/1 multiply by 2
∴ the emprical formula C3H8O2
Given: C3H8(g) + O2(g) ----> CO2 (g) + H2O (g)
Step : Put a 3 in front of CO2 (g) to balance C
=> C3H8(g) + O2(g) ----> 3CO2 + H2O to balance H
Step 2: Put a 4 in front of H2O
=> C3H8 (g) + O2(g) -----> 3CO2 (g) + 4H2O (g)
Step 3: Given that there are 3*2 + 4 = 10 O to the right side, put a 5 in front of O2 to balance O:
=> C3H8(g) + 5O2(g) -----> 3CO2(g) + 4H2O(g)
You can verify that the equation is balanced.
So, the answer is that the coefficient in front of O2 is 5.