Answer:
The tension force in the supporting cables is 7245N
Explanation:
There are two forces acting on the elevator: the force of gravity pointing down (+) with magnitude (elevator mass) x (gravitational acceleration), and the tension force of the cable pointing up (-) with an unknown magnitude F. The net force is the sum of these forces:

We are given the resulting acceleration along with the mass, i.e., we know the net force, allowing us to solve for F:

The tension force F in the supporting cables is 7245N
The answer is B, Law of Kinetic Energy
The centrifugal force C = mv^2/r = kq^2/r^2 = P centripetal force. m is the electron mass, q are the proton and electron charges (opposites), and r is the Bohr radius.
Thus 1/2 mv^2/r = 1/2 kq^2/r^2 and KE = 1/2 mv^2 = 1/2 kq^2/r = 1/2 PE
Therefore KE/PE = 1/2, no matter what state the electron is in.
The two subatomic particles that contribute to the net charge of an ion are electrons and protons.
<h3>What is an atom?</h3>
Atom is the smallest possible amount of matter which still retains its identity as a chemical element, now known to consist of a nucleus surrounded by electrons.
The atom is made up of three components called subatomic particles as follows;
The proton is the positively charged subatomic particle forming part of the nucleus of an atomwhile the electron is the subatomic particle having a negative charge and orbiting the nucleus.
This suggests that the two subatomic particles that contribute to the net charge of an ion are electrons and protons. That is;
Net charge = protons - electrons
Learn more about subatomic particles at:brainly.com/question/13303285
#SPJ1