Answer:
35.6 N
Explanation:
We can consider only the forces acting along the horizontal direction to solve the problem.
There are two forces acting along the horizontal direction:
- The horizontal component of the pushing force, which is given by

with 
- The frictional force, whose magnitude is

where
, m=8.2 kg and g=9.8 m/s^2.
The two forces have opposite directions (because the frictional force is always opposite to the motion), and their resultant must be zero, because the suitcase is moving with constant velocity (which means acceleration equals zero, so according to Newton's second law: F=ma, the net force is zero). So we can write:

The vertical component is = vsinx m/s
If you know the angle, substitute the value of x.
If you know the velocity at which it is moving, substitute it for v
Hope it helps :)
The momentum of the
x-ray photon is p = h/lambda . Lambda is the wavelength (0.30nm=3x10^(-9)m) and
h is Planck's constant,(h=6.62607004 × 10-34<span> m2 kg / s).The
momentum is: 2.2 x 10^(-25).</span>
The momentum can be calculated
also as: p=mv, where m is the mass of the electron and v is the speed.
So v=p/m,p is known,and
also the mass of the electron (m=9.10938356 × 10-31<span> kilograms).</span>
v=2.2 x 10^(-25)/9.10938356
× 10-31<span> kilograms=0.24 x 10^6 m/s</span>
Answer:
Therefore the correct statement is B.
Explanation:
In the interference and diffraction phenomena, the natural wave of electromagnetic radiation must be taken into account, the wave front that advances towards the slit can be considered as when it reaches it behaves like a series of wave emitters, each slightly out of phase from the previous one, following the Huygens principle that states that each point is compiled as a source of secondary waves.
The sum of all these waves results in the diffraction curve of the slit that has the shape
I = Io sin² θ /θ²
Where the angle is a function of the wavelength and the width of the slit.
From the above, the interference phenomenon can be treated as the sum of two diffraction phenomena displaced a distance equal to the separation of the slits (d)
Therefore the correct statement is B
Volume=mass/density
volume=455.6/19.3
volume=23.6 mL