All the triangles are isosceles meaning that they have to sides that are equal
Answer:
A) AAS; B) LA; C) ASA
Step-by-step explanation:
AAS is the Angle-Angle-Side congruence statement. It says that if two angles and a non-included side of one triangle are congruent to the corresponding two angles and non-included side of a second triangle, then the triangles are congruent. In these triangles, ∠E≅∠K, ∠F≅∠L, and DE≅JK. These are two angles and a non-included side; this is AAS.
LA is the leg-acute theorem. It states that if a leg and acute angle of one triangle is congruent to the corresponding leg and acute angle of another triangle, then the triangles are congruent.
The leg we have congruent from each triangle is DE and JK. We also have ∠E≅∠K and ∠F≅∠L, both pairs of which are acute. This is the LA theorem.
ASA is the Angle-Side-Angle congruence statement. It says that if two angles and an included side of one triangle are congruent to the corresponding two angles and included side of another triangle, then the triangles are congruent.
We have that ∠D≅∠J, DE≅JK and ∠E≅∠K. This gives us two angles and an included side, or ASA.
You need to go from slope-intercept (

) to standard form (

).
slope-intercept form of your provided values:
now, solve for x and y
Your answer is 
.
<h2>1. Is the number 5 prime, composite,</h2><h2>or neither?</h2><h3>The number 5 is prime since it can only be divided by itself and 1.</h3><h3 /><h3>Hope I helped. :)</h3>
Answer:
x=1
Explain:
y=2x^2−4x+1
dy/dx=4x-4
The line of symmetry will be where the curve turns (due to the nature of the
x^2 graph.
This is also when the gradient of the curve is 0.
Therefore, let
dy/dx=0
This forms an equation such that:
4x−4=0
solve for x,
x=1
and line of symmetry falls on the line
x=1