A. This is not a redox reaction. It is an example of combustion.
<h3>Combustion reaction of hydrocarbon</h3>
During the combustion of a hydrocarbon, the hydrocarbon reacts with oxygen to create carbon dioxide, water, and heat.
<h3>Example of combustion reaction</h3>
2C8H18 + 25O2 → 16CO2 + 18H2O
Thus, we can conclude that, this is not a redox reaction. It is an example of combustion.
Learn more about combustion here: brainly.com/question/9425444
#SPJ1
Answer: The sequence from longest wavelength (radio waves) to shortest wavelength (gamma rays) is also a sequence in energy from lowest energy to highest energy. ... The energy carried by a radio wave is low, while the energy carried by a gamma ray is high. Different materials can block different types of light.
PLEASE MARK BRAINLIEST
Answer:
9.63 L of NO
Explanation:
We'll begin by calculating the number of mole in 50.0 g of NH₄ClO₄. This can be obtained as follow:
Mass of NH₄ClO₄ = 50 g
Molar mass of NH₄ClO₄ = 14 + (4×1) + 35.5 + (16×4)
= 14 + 4 + 35.5 + 64
= 117.5 g/mol
Mole of NH₄ClO₄ =?
Mole = mass /molar mass
Mole of NH₄ClO₄ = 50/117.5
Mole of NH₄ClO₄ = 0.43 mole
Next, we shall determine the number of mole of NO produced by the reaction of 50 g (i.e 0.43 mole) of NH₄ClO₄. This can be obtained as follow:
3Al + 3NH₄ClO₄ –> Al₂O₃ + AlCl₃ + 3NO + 6H₂O
From the balanced equation above,
3 moles of NH₄ClO₄ reacted to produce 3 moles of NO.
Therefore, 0.43 mole of NH₄ClO₄ will also react to produce 0.43 mole of NO.
Finally, we shall determine the volume occupied by 0.43 mole of NO. This can be obtained as follow:
1 mole of NO = 22.4 L
Therefore,
0.43 mole of NO = 0.43 × 22.4
0.43 mole of NO = 9.63 L
Thus, 9.63 L of NO were obtained from the reaction.
Answer:
The central atom has 3 electron domains.
Explanation:
According to the Valence Shell electron pair repulsion theory (VSEPR) put forward by Gillespie and Nyholm in 1957, the shape of a molecule is determined by repulsion between all the electron pairs (electron domains) present in the valence shell.
The electron pairs or electron domains are known to position themselves as far apart in space as possible in order to minimize repulsions.
Hence, when the central atom of a molecule contains three electron domains, they are positioned at an angle of 120° from each other to minimize repulsions. Hence the answer.