Answer:
a) A microstate is a snapshot of positions and speeds at a particular instant.
b) A thermodynamic state is a single possible arrangement of the positions and kinetic energies of the molecules.
c) A thermodynamic state is a set of conditions, usually temperature and pressure, that defines the properties of a bulk material.
d) A microstate is a single possibility for all the positions and kinetic energies of all the molecules in a sample.
e) A thermodynamic state is a set of conditions, usually temperature, volume and number of moles, that defines the properties of a bulk material.
Explanation:
A state of a system in thermodynamics give the properties that a material is been made up, these properties could be pressure, temperature, volumes and others , they are been called thermodynamic property
Microstates helps us to know how molecules is been arranged in single instant. Kinetics energy as well as position of molecules in a particular substance can be known in single instant.
Answer:
a. Remaining at rest requires the use of ATP.
Explanation:
The resting membrane potential is maintained by the sodium-potassium pump. The sodium potassium pump does this by actively pumping sodium ions out of the cell and potassium ions inside the cell in a ratio of 3:2. This movement of ions by the sodium-potassium pump is against their concentration gradient. In a neuron at rest, there are more sodium ions outside the cell than there are inside the cell. Also, there are are more potassium ions inside the cell than there are outside the cell. However, there are ion channels through which these ions enter and leave the cell. Sodium ion channels allow sodium to enter the cell following its concentration gradient, whereas, potassium ion channels allow potassium to leave the cell following its concentration gradient. However, more potassium ions leave the cell than do sodium ions enter the cell because of the higher permeability of the cell to potassium ions.
In order to maintain the resting membrane potential, the sodium potassium pump powered by the hydrolysis of an ATP molecules pumps sodium ions out of the cell and potassium ions into the cell.
<em>Therefore, the correct option is A, as ATP is needed by the sodium-potassium pump in order to maintain the resting membrane potential.</em>
Using the ideal gas law: PV=nRT
P is pressure; V is volume; n is the amount in moles; R=0.082; T is temperature in K.
(4.68)*(4.95)=(16.45)*(0.0821)*T
Solve for T.
T=17.15