0.250 mol/L
<em>Step 1</em>. Write the chemical equation
H2SO4 + 2NaOH → Na2SO4 + 2H2O
<em>Step 2</em>. Calculate the moles of H2SO4
Moles of H2SO4 = 12.5 mL H2SO4 × (0.500 mmol H2SO4/1 mL H2SO4)
= 6.25 mmol H2SO4
<em>Step 3</em>. Calculate the moles of NaOH
Moles of NaOH = 6.25 mmol H2SO4 × (2 mmol NaOH/(1 mmol H2SO4)
= 12.5 mmol NaOH
<em>Step 4</em>. Calculate the concentration of the NaOH
[NaOH] = moles/litres = 12.5 mmol/50.0 mL = 0.250 mol/L
Answer:
(a) 282 kJ
(b) 67.4 Calories
Explanation:
(a) The molar enthalpy, ΔH = −2802.5 kJ/mol, means that the heat produced by the reaction is 2802.5 kJ per mol of glucose.
We can multiply the enthalpy by the number of moles of glucose to get the heat produced by the metabolism. Grams of glucose will be converted to moles using the molar mass of glucose (180.156 g/mol):
(18.1 g)(mol/180.156g)(2802.5 kJ/mol) = 282 kJ
(b) Using the result we obtained above, kJ will be converted to Calories using the conversion factor of 4.184J = 1 cal. Calorie with a capital C is the same as a kilocalorie.
(282 kJ)(1 cal/4.184J) = 67.4 kcal = 67.4 Calories
<span>The number of moles in Al2O3 is .16575 moles</span>
The answer is C.) Each sample has the same number of molecules.
Answer:
Final temperature = 28.0 degrees C.
Explanation:
heat absorbed = mass * specific heat * rise in temperature.
The specific heat of water is 4.186 J /g/C so we have the equation
209 = 10 * 4.186 * x where x is the temperature increase
41.86x = 209
= 5 degrees C.