Answer:
Experiment 8 E Data Table 3 fl Data Table 4 fl Data Table 5 fl Data Table 6 Data Table 3: Polystyrene Test Tube, 12x75mm Volume of water at room temperature (V1 in mL) Volume of gas in polystyrene tube at boil (V2 in mL) Temperature of gas at boil inside polystyrene tube (°C) Volume of gas in polystyrenetube at room temperature (V3 in mL) Temperature of gas.
Explanation:
Hope this helps
Mark as Brainliest please
Answer:
Calcium would displace barium.
Explanation:
Ba(NO₃)₂ + Ca --> Ca(NO₃)₂ + Ba
There are two types of compounds: molecular/covalent and ionic.
Molecular/covalent compounds are non-metal + non-metal.
Ionic compounds are metal + non-metal.
Looking at the periodic table, barium is a metal. Calcium is also a metal.
Checking a polyatomic ions chart would tell you NO₃⁻ is a non-metal because it has a negative charge.
Since there is no metal + metal compound, the calcium metal would displace barium. The compound remains ionic.
Answer:
Primer postulado:
Así Bohr asumió que el átomo de hidrógeno puede existir solo en ciertos estados discretos, los cuales son denominados estados estacionarios del átomo. En el átomo no hay emisión de radiación electromagnética mientras el electrón no cambia de órbita.
Explanation:
My guess on that molecule is nucleus , sorry if it’s not correct
Answer: 1) Maximum mass of ammonia 198.57g
2) The element that would be completely consumed is the N2
3) Mass that would keep unremained, is the one of the excess Reactant, that means the H2 with 3,44g
Explanation:
- In order to calculate the Mass of ammonia , we first check the Equation is actually Balance:
N2(g) + 3H2(g) ⟶2NH3(g)
Both equal amount of atoms side to side.
- Now we verify which reagent is the limiting one by comparing the amount of product formed with each reactant, and the one with the lowest number is the limiting reactant. ( Keep in mind that we use the molecular weight of 28.01 g/mol N2; 2.02 g/mol H2; 17.03g/mol NH3)
Moles of ammonia produced with 163.3g N2(g) ⟶ 163.3g N2(g) x (1mol N2(g)/ 28.01 g N2(g) )x (2 mol NH3(g) /1 mol N2(g)) = 11.66 mol NH3
Moles of ammonia produced with 38.77 g H2⟶ 38.77 g H2 x ( 1mol H2/ 2.02 g H2 ) x (2 mol NH3 /3 mol H2 ) = 12.79 mol NH3
- As we can see the amount of NH3 formed with the N2 is the lowest one , therefore the limiting reactant is the N2 that means, N2 is the element that would be completey consumed, and the maximum mass of ammonia will be produced from it.
- We proceed calculating the maximum mass of NH3 from the 163.3g of N2.
11.66 mol NH3 x (17.03 g NH3 /1mol NH3) = 198.57 g NH3
- In order to estimate the mass of excess reagent, we start by calculating how much H2 reacts with the giving N2:
163.3g N2 x (1mol N2/28.01 g N2) x ( 3 mol H2 / 1 mol N2)x (2.02 g H2/ 1 mol H2) = 35.33 g H2
That means that only 35.33 g H2 will react with 163.3g N2 however we were giving 38.77g of H2, thus, 38.77g - 35.33 g = 3.44g H2 is left